Although all 12 subtypes of human interferon alpha (IFN-␣
HIV-1 is transmitted primarily across mucosal surfaces and rapidly spreads within the intestinal mucosa during acute infection. The type I interferons (IFNs) likely serve as a first line of defense, but the relative expression and antiviral properties of the 12 IFNα subtypes against HIV-1 infection of mucosal tissues remain unknown. Here, we evaluated the expression of all IFNα subtypes in HIV-1-exposed plasmacytoid dendritic cells by next-generation sequencing. We then determined the relative antiviral potency of each IFNα subtype ex vivo using the human intestinal Lamina Propria Aggregate Culture model. IFNα subtype transcripts from the centromeric half of the IFNA gene complex were highly expressed in pDCs following HIV-1 exposure. There was an inverse relationship between IFNA subtype expression and potency. IFNα8, IFNα6 and IFNα14 were the most potent in restricting HIV-1 infection. IFNα2, the clinically-approved subtype, and IFNα1 were both highly expressed but exhibited relatively weak antiviral activity. The relative potencies correlated with binding affinity to the type I IFN receptor and the induction levels of HIV-1 restriction factors Mx2 and Tetherin/BST-2 but not APOBEC3G, F and D. However, despite the lack of APOBEC3 transcriptional induction, the higher relative potency of IFNα8 and IFNα14 correlated with stronger inhibition of virion infectivity, which is linked to deaminase-independent APOBEC3 restriction activity. By contrast, both potent (IFNα8) and weak (IFNα1) subtypes significantly induced HIV-1 GG-to-AG hypermutation. The results unravel non-redundant functions of the IFNα subtypes against HIV-1 infection, with strong implications for HIV-1 mucosal immunity, viral evolution and IFNα-based functional cure strategies.
OBJECTIVE Gut microbial translocation (MT) is a major driving force behind chronic immune activation during HIV-1 infection. HIV-1-related intestinal dysbiosis, including increases in mucosa-associated pathobionts, may influence MT and contribute to mucosal and systemic inflammation. Thus, it is critical to understand the mechanisms by which gut microbes and their metabolic products, such as butyrate, influence immune cell function during HIV-1 infection. DESIGN A cross-sectional study was performed to compare the relative abundance of butyrate-producing bacterial species (BPB) in colonic biopsies and stool of untreated, chronic HIV-1 infected (n=18) and uninfected (n=14) study participants. The effect of exogenously added butyrate on gut T cell activation and HIV-1 infection was evaluated using an ex vivo human intestinal cell culture model. METHODS Species were identified in 16S ribosomal RNA sequence datasets. Ex vivo isolated lamina propria (LP) mononuclear cells were infected with CCR5-tropic HIV-1Bal, cultured with enteric Gram-negative bacteria and a range of butyrate doses, and LP T cell activation and HIV-1 infection levels measured. RESULTS Relative abundance (RA) of total BPB and specifically of Roseburia intestinalis, were lower in colonic mucosa of HIV-1 infected versus uninfected subjects. In HIV-1 infected study participants, R. intestinalis RA inversely correlated with systemic indicators of MT, immune activation and vascular inflammation. Exogenous butyrate suppressed enteric Gram-negative bacteria-driven LP T cell activation and HIV-1 infection levels in vitro. CONCLUSIONS Reductions in mucosal butyrate from diminished colonic BPB may exacerbate pathobiont driven gut T cell activation and HIV replication, thereby contributing to HIV-associated mucosal pathogenesis.
Functional impairment during successful antiretroviral therapy was associated with higher CD8(+) T-cell activation and interleukin 6 levels. Interventions to decrease immune activation and inflammation should be evaluated for their effects on physical function and frailty.
Microbial translocation has been linked to systemic immune activation in HIV-1 disease, yet mechanisms by which microbes may contribute to HIV-associated intestinal pathogenesis are poorly understood. Importantly, our understanding of the impact of translocating commensal intestinal bacteria on mucosal-associated T cell responses in the context of ongoing viral replication that occurs early in HIV-1 infection is limited. We previously identified commensal Escherichia coli-reactive Th1 and Th17 cells in normal human intestinal lamina propria (LP). In this article, we established an ex vivo assay to investigate the interactions between Th cell subsets in primary human LP mononuclear cells (LPMCs), commensal E. coli, and CCR5-tropic HIV-1Bal. Addition of heat-killed E. coli to HIV-1–exposed LPMCs resulted in increases in HIV-1 replication, CD4 T cell activation and infection, and IL-17 and IFN-γ production. Conversely, purified LPS derived from commensal E. coli did not enhance CD4 T cell infection. E. coli exposure induced greater proliferation of LPMC Th17 than Th1 cells. Th17 cells were more permissive to infection than Th1 cells in HIV-1–exposed LPMC cultures, and Th17 cell infection frequencies significantly increased in the presence of E. coli. The E. coli-associated enhancement of infection was dependent on the presence of CD11c+ LP dendritic cells and, in part, on MHC class II-restricted Ag presentation. These results highlight a potential role for translocating microbes in impacting mucosal HIV-1 pathogenesis during early infection by increasing HIV-1 replication and infection of intestinal Th1 and Th17 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.