Conspectus The use of earth-abundant, cheap, potent, and readily available lanthanide photocatalysts provides an opportunity to complement or even replace rare and precious metal photosensitizers. Moreover, lanthanide photosensitizers have been demonstrated for the generation of a variety of reactive species, including aryl radicals, alkyl radicals, and others, by single-electron-transfer (SET) and hydrogen atom transfer (HAT) pathways under mild reaction conditions. Some lanthanide photocatalysts have unprecedented reducing power from their photoexcited states, achieving the activation of challenging organic substrates that have not otherwise been activated by reported organic or transition-metal photosensitizers. In this Account, we describe our recent advances in the rational design and strategic application of lanthanide photo(redox)catalysis. Our research goals include understanding the photophysics of lanthanide luminophores and incorporating them into new photocatalysis. Among the lanthanides, we have focused on cerium because of the doublet to doublet 4f → 5d excitation and emission, which affords good conservation of energy without losses through spin-state changes, as well as a large natural abundance of that element. We have performed structural, spectroscopic, computational, and reactivity studies to demonstrate that luminescent Ce(III) guanidinate–amide complexes can mediate photocatalytic C(sp3)–C(sp3) bond forming reactions. Taking advantage of the strong reducing power of the cerium excited states and the cerium–halogen bond forming enthalpies, we determined that the reactive, excited-state cerium metalloradical abstracts chloride anion from benzyl chloride to generate the benzyl radical. To control and predict the photocatalytic reactivities, we have also performed photophysical and photochemical studies on a series of mixed-ligand Ce(III) guanidinate–amide and guanidinate–aryloxide complexes to establish structure–property relationship for Ce(III) photocatalysts. We discovered that the emission color is directly related to ligand type and rigidity of the coordination sphere and that the photoluminescent quantum yield is correlated to variation in steric encumbrance around the cerium centers. The low excited-state reduction potentials (E 1/2 * ≈ −2.1 to −2.9 V versus Cp2Fe0/+) and relatively fast quenching rates (k q ≈ 107 M–1 s–1) toward aryl halides enabled the Ce(III) guanidinate–amide complexes to participate in photocatalytic C(sp2)–C(sp2) bond forming reactions through either inner-sphere or outer-sphere SET processes. We have also reported a simple, potent, and air-stable ultraviolet A photoreductant, the hexachlorocerate(III) anion ([CeIIICl6]3–). This complex is a potent photoreductant (E 1/2 * ≈ −3.45 V versus Cp2Fe0/+) and exhibits a fast quenching kinetics (k q ≈ 109–1010 M–1 s–1) toward organohalogens. The [CeIVCl6]2− redox partner can also act as a potent photo-oxidant though a (presumably) long-lived chloride-to-cerium(IV) charge transfer excited state (ε = ∼6000 M–1 cm...
The stabilizing effect of a tris(tert-butoxy)siloxy ligand on cerium(iv) is revealed by electrochemical and computation methods as well as by targeted redox chemistry. Ceric homoleptic complex Ce[OSi(OtBu)3]4 was obtained by the reaction of [Et4N]2[CeCl6] with NaOSi(OtBu)3 at ambient temperature in acetonitrile, while cerous ion-separated complex [Ce{OSi(OtBu)3}4][K(2.2.2-crypt)] was readily synthesized from [Ce{OSi(OtBu)3}4K] and cryptand. The solid-state structures of monocerium complexes Ce[OSi(OtBu)3]4 and Ce[OSi(OtBu)3]4(THF) show 5- and 6-coordinate CeIV centers (one κ2-bonded siloxy ligand), while complex [Ce{OSi(OtBu)3}4][K(2.2.2-crypt)] exhibits a 4-coordinate CeIII center (all-terminal siloxy coordination). A comparative electrochemical study of Ce[OSi(OtBu)3]4 and [Ce{OSi(OtBu)3}4][K(2.2.2-crypt)] suggests a redox-modulated molecular rearrangement process, featuring oxidation-state dependent formation and release of a CeOtBu coordination. While the overall stabilization of CeIV by the siloxy ligand is evident, significant extra stabilization is gained if the siloxy ligand coordinates in a chelating fashion, which is further supported by DFT calculations. Natural bond orbital (NBO) analysis indicates an enhanced donation of the siloxy ligand electron density into the unfilled CeIV 6s, 4f, and 5d orbitals. CeIV to CeIII reduction readily occurs when homoleptic complex Ce[OSi(OtBu)3]4 is treated with cobaltocene, affording the separated ion pair [Ce{OSi(OtBu)3}4][CoCp2], featuring exclusive terminal siloxy bonding in the solid-state, similar to that detected for [Ce{OSi(OtBu)3}4][K(2.2.2-crypt)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.