Rift Valley fever virus (RVFV) is a mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula. There are no approved antiviral therapies or vaccines available to treat or prevent severe disease associated with RVFV infection in humans. The adenosine analog, galidesivir (BCX4430), is a broad-spectrum antiviral drug candidate with in vitro antiviral potency (EC of less than 50 μM) in more than 20 different viruses across eight different virus families. Here we report on the activity of galidesivir in the hamster model of peracute RVFV infection. Intramuscular and intraperitoneal treatments effectively limited systemic RVFV (strain ZH501) infection as demonstrated by significantly improved survival outcomes and the absence of infectious virus in the spleen and the majority of the serum, brain, and liver samples collected from infected animals. Our findings support the further development of galidesivir as an antiviral therapy for use in treating severe RVFV infection, and possibly other related phleboviral diseases.
Favipiravir is approved in Japan to treat novel or re-emerging influenza viruses, and is active against a broad spectrum of RNA viruses, including Ebola. Ribavirin is the only other licensed drug with activity against multiple RNA viruses. Recent studies show that ribavirin and favipiravir act synergistically to inhibit bunyavirus infections in cultured cells and laboratory mice, likely due to their different mechanisms of action. Convalescent immune globulin is the only approved treatment for Argentine hemorrhagic fever caused by the rodent-borne Junin arenavirus. We previously reported that favipiravir is highly effective in a number of small animal models of Argentine hemorrhagic fever. We now report that addition of low dose of ribavirin synergistically potentiates the activity of favipiravir against Junin virus infection of guinea pigs and another arenavirus, Pichinde virus infection of hamsters. This suggests that the efficacy of favipiravir against hemorrhagic fever viruses can be further enhanced through the addition of low-dose ribavirin.
BackgroundJunín virus (JUNV), the etiologic agent of Argentine hemorrhagic fever (AHF), is classified by the NIAID and CDC as a Category A priority pathogen. Presently, antiviral therapy for AHF is limited to immune plasma, which is readily available only in the endemic regions of Argentina. T-705 (favipiravir) is a broadly active small molecule RNA-dependent RNA polymerase inhibitor presently in clinical evaluation for the treatment of influenza. We have previously reported on the in vitro activity of favipiravir against several strains of JUNV and other pathogenic New World arenaviruses.Methodology/Principal FindingsTo evaluate the efficacy of favipiravir in vivo, guinea pigs were challenged with the pathogenic Romero strain of JUNV, and then treated twice daily for two weeks with oral or intraperitoneal (i.p.) favipiravir (300 mg/kg/day) starting 1–2 days post-infection. Although only 20% of animals treated orally with favipiravir survived the lethal challenge dose, those that succumbed survived considerably longer than guinea pigs treated with placebo. Consistent with pharmacokinetic analysis that showed greater plasma levels of favipiravir in animals dosed by i.p. injection, i.p. treatment resulted in a substantially higher level of protection (78% survival). Survival in guinea pigs treated with ribavirin was in the range of 33–40%. Favipiravir treatment resulted in undetectable levels of serum and tissue viral titers and prevented the prominent thrombocytopenia and leucopenia observed in placebo-treated animals during the acute phase of infection.Conclusions/SignificanceThe remarkable protection afforded by i.p. favipiravir intervention beginning 2 days after challenge is the highest ever reported for a small molecule antiviral in the difficult to treat guinea pig JUNV challenge model. These findings support the continued development of favipiravir as a promising antiviral against JUNV and other related arenaviruses.
Favipiravir (T-705) is a new anti-influenza drug approved for human use in Japan and progressing through Phase 3 clinical trials in the U.S. In addition to its potent inhibitory effects against influenza virus infection, the compound has been shown to be broadly active against RNA viruses from 9 different families, including the Arenaviridae. Several members of the Arenaviridae family of viruses are significant human pathogens that cause viral hemorrhagic fever, a severe systemic syndrome where vascular leak is a cardinal feature. Because arenaviral infections are unlikely to be diagnosed and treated until the illness has progressed to a more advanced state, it is important to understand the effects of the disease state on favipiravir pharmacokinetics (PK) and biodistribution to help guide therapeutic strategy. During acute arenavirus infection in hamsters, we found reduced plasma favipiravir concentrations and altered kinetics of absorption, elimination and time to maximum drug concentration. In addition, the amounts of the favipiravir M1 primary metabolite were higher in the infected animals, suggesting that favipiravir metabolism may favor the formation of this inactive metabolite during viral infection. We also discovered differences in favipiravir and M1 PK parameters associated with arenavirus infection in a number of hamster tissues. Finally, analysis at the individual animal level demonstrated a correlation between reduced plasma favipiravir concentration with increased disease burden as reflected by weight loss and viral load. Our study is the first to show the impact of active viral infection and disease on favipiravir PK and biodistribution, highlighting the need to consider alterations in these parameters when treating individuals with viral hemorrhagic fever of arenavirus or other etiology.
BackgroundA growing number of arenaviruses can cause a devastating viral hemorrhagic fever (VHF) syndrome. They pose a public health threat as emerging viruses and because of their potential use as bioterror agents. All of the highly pathogenic New World arenaviruses (NWA) phylogenetically segregate into clade B and require maximum biosafety containment facilities for their study. Tacaribe virus (TCRV) is a nonpathogenic member of clade B that is closely related to the VHF arenaviruses at the amino acid level. Despite this relatedness, TCRV lacks the ability to antagonize the host interferon (IFN) response, which likely contributes to its inability to cause disease in animals other than newborn mice.Methodology/Principal FindingsHere we describe a new mouse model based on TCRV challenge of AG129 IFN-α/β and -γ receptor-deficient mice. Titration of the virus by intraperitoneal (i.p.) challenge of AG129 mice resulted in an LD50 of ∼100 fifty percent cell culture infectious doses. Virus replication was evident in the serum, liver, lung, spleen, and brain 4–8 days after inoculation. MY-24, an aristeromycin derivative active against TCRV in cell culture at 0.9 µM, administered i.p. once daily for 7 days, offered highly significant (P<0.001) protection against mortality in the AG129 mouse TCRV infection model, without appreciably reducing viral burden. In contrast, in a hamster model of arenaviral hemorrhagic fever based on challenge with clade A Pichinde arenavirus, MY-24 did not offer significant protection against mortality.Conclusions/SignificanceMY-24 is believed to act as an inhibitor of S-adenosyl-L-homocysteine hydrolase, but our findings suggest that it may ameliorate disease by blunting the effects of the host response that play a role in disease pathogenesis. The new AG129 mouse TCRV infection model provides a safe and cost-effective means to conduct early-stage pre-clinical evaluations of candidate antiviral therapies that target clade B arenaviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.