Extreme weather events are increasing in frequency, causing disruption to global ecosystems. Large-scale events, such as marine heatwaves, can impact the abundance of prey species, which consequently influences the behaviour of top-level predators such as seabirds. The short-tailed shearwater Ardenna tenuirostris is a trans-hemispheric migrant with typically a highly synchronous breeding phenology. Here, we document short-tailed shearwater colony occupancy for the period 2011-2020, with a focussed assessment of their breeding success in the 2019/20 season, which followed a marine heatwave that occurred predominantly in the non-breeding areas in the North Pacific Ocean. The return of the birds to their breeding colonies in southeast Australia was delayed by approximately 2 wk in October 2019, and the subsequent breeding season ended with only 34% breeding success, with nest abandonment beginning in the incubation phase. A North Pacific marine heatwave in 2019, associated with a mass mortality event of over 9000 birds (‘wreck’ of beach-washed birds), led to reduced adult body condition and carry-over effects causing egg and chick failures during the subsequent breeding season. Localised weather events (i.e. flooding of burrows due to heavy rainfall) also influenced breeding outcomes of the 2019/20 season. The relationship between wreck events and seabird breeding ecology is an understudied area, partly due to the difficulties around quantifying the scale of wrecks. Our study is one of few that documents poor seabird breeding success following the extreme marine conditions which have persisted in the North Pacific Ocean since 2013.
An ecological risk assessment, based on life-history and behavioural attributes of 273 bird taxa, was used to identify which of those taxa are at high risk from negative interactions with offshore wind farms in Australia. The marine area of Australia was divided by state/territory boundaries perpendicular to the coast into eight regions, with Western Australia further divided into north and south, and a Bass Strait region bounded by the Victoria coast and the north coast of Tasmania. These regions were subdivided into coastal, inshore and offshore sub-regions and a risk summary for all bird taxa occurring in each of these sub-regions produced. In coastal and inshore sub-regions of Bass Strait, South Australia and Tasmania, the species with the highest risk scores were Orangebellied Parrot Neophema chrysogaster, Furneaux White-fronted Tern Sterna striata incerta, Swift Parrot Lathamus discolor, Shy Albatross Thalassarche cauta, Far Eastern Curlew Numenius madagascariensis and Anadyr Bar-tailed Godwit Limosa lapponica anadyrensis. In offshore sub-regions in southern Australia, the highest risk species were all albatrosses, comprising Northern Royal Diomedea sanfordi, Eastern Antipodean D. antipodensis antipodensis, Gibson's D. antipodensis gibsoni, Wandering D. exulans, Amsterdam D. amsterdamensis and Grey-headed Albatross T. chrysostoma. Compared to onshore installations, there are logistical challenges to quantifying the potential and realized impacts of offshore wind farms that require different approaches to data collection and analyses. The extensive development of offshore wind farms in the Northern Hemisphere provides examples of best and emerging approaches to quantify and mitigate negative impacts of offshore wind farms that can be applied in an Australian context. Despite differences in the species involved, the same approaches to identifying high-risk species and to the monitoring and mitigation of negative impacts should be applied in a coordinated, regional-scale approach to the development of offshore wind farms in Australia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.