Graphene sheets--one-atom-thick two-dimensional layers of sp2-bonded carbon--are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (approximately 3,000 W m(-1) K(-1) and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene-graphene composite formed by this route exhibits a percolation threshold of approximately 0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes; at only 1 volume per cent, this composite has a conductivity of approximately 0.1 S m(-1), sufficient for many electrical applications. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.
In four-probe (4-probe) electrical measurements, especially on highly resistive materials, it is not always possible to configure the electrodes such that the current density is uniform throughout the sample. Under such circumstances, simply considering the material's electrical resistivity to be proportional to the measured resistance with the proportionality constant given by the sample geometry can give an incorrect result. In this paper, a numerical finite element model is presented which can extract a material's true resistivity from co-linear 4-probe electrical measurements on highly resistive samples with large electrodes that extend across the sample width. The finite element model is used to investigate the influence of material anisotropy, the resistance of the sample-electrode interfaces and the relative electrode-to-sample size on the potential and current density distributions in the sample. A correction factor is introduced to account for the impact of these effects on the measured resistivity. In the limit of large interface resistance, excellent agreement is found with an analytical expression derived elsewhere (Esposito et al 2000 J. Appl. Phys. 88 2724. The approach presented here can be used to evaluate a variety of effects on co-linear 4-probe electrical measurements, can be extended to complex specimen geometries with arbitrary electrode arrangements and, additionally, could find use in the evaluation of data from 4-probe thermal conductivity measurements.
Textured alumina films have been used to fabricate nanoscale pores in Si3N4 membranes. A few nanometer-thick alumina layer was used as a masking material for nanopore fabrication, and the pattern was transferred into a 100-nm thick, 200 microm x 200 microm Si3N4 membrane by reactive ion etching (RIE). The nanopores were found to be concentrated in a approximately 150-microm diameter region at the center of the membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.