An X-ray crystal structure of Kelch-like ECH-associated protein (Keap1) co-crystallised with (1S,2R)-2-[(1S)-1-[(1,3-dioxo-2,3-dihydro-1H-isoindol-2-yl)methyl]-1,2,3,4-tetrahydroisoquinolin-2-carbonyl]cyclohexane-1-carboxylic acid (compound (S,R,S)-1 a) was obtained. This X-ray crystal structure provides breakthrough experimental evidence for the true binding mode of the hit compound (S,R,S)-1 a, as the ligand orientation was found to differ from that of the initial docking model, which was available at the start of the project. Crystallographic elucidation of this binding mode helped to focus and drive the drug design process more effectively and efficiently.
BACKGROUND AND PURPOSEAvailable medications for chronic pain provide only partial relief and often cause unacceptable side effects. There is therefore a need for novel molecular targets to develop new therapeutics with improved efficacy and tolerability. Despite encouraging efficacy data in rodents with inhibitors of the neuronal glycine transporter-2 (GlyT2), there are also some reports of toxicity and their development was discontinued.
EXPERIMENTAL APPROACHIn order to clarify the possibility of targeting GlyT2 for the treatment of pain, we have used an integrated approach comprising in vitro pharmacology, selectivity, bioavailability, in vivo efficacy and safety assessment to analyse the properties and efficacy of ALX-1393 and Org-25543, the two published GlyT2 inhibitors from which in vivo data are available.
KEY RESULTSWe report that these compounds have a different set of undesirable properties that limit their usefulness as pharmacological tools. Importantly, we discover that inhibitors of GlyT2 can exert an apparent reversible or irreversible inhibition of the transporter and describe a new class of reversible GlyT2 inhibitors that preserves efficacy while avoiding acute toxicity.
CONCLUSIONS AND IMPLICATIONSOur pharmacological comparison of two closely related GlyT2 inhibitors with different modes of inhibition provides important insights into their safety and efficacy profiles, uncovering that in the presence of a GlyT2 mechanism-based toxicity, reversible inhibitors might allow a tolerable balance between efficacy and toxicity. These findings shed light into the drawbacks associated with the early GlyT2 inhibitors and describe a new mechanism that might serve as the starting point for new drug development.
The role of the synaptic vesicle protein 2A (SV2A) protein, target of the antiepileptic drug levetiracetam, is still mostly unknown. Considering its potential to provide in vivo functional insights into the role of SV2A in epileptic patients, the development of an SV2A positron emission tomography (PET) tracer has been undertaken. Using a 3D pharmacophore model based on close analogues of levetiracetam, we report the rationale design of three heterocyclic non-acetamide lead compounds, UCB-A, UCB-H and UCB-J, the first single-digit nanomolar SV2A ligands with suitable properties for development as PET tracers.
Herein we provide a living summary of the data generated during the COVID Moonshot project focused on the development of SARS-CoV-2 main protease (Mpro) inhibitors. Our approach uniquely combines crowdsourced medicinal chemistry insights with high throughput crystallography, exascale computational chemistry infrastructure for simulations, and machine learning in triaging designs and predicting synthetic routes. This manuscript describes our methodologies leading to both covalent and non-covalent inhibitors displaying protease IC50 values under 150 nM and viral inhibition under 5 uM in multiple different viral replication assays. Furthermore, we provide over 200 crystal structures of fragment-like and lead-like molecules in complex with the main protease. Over 1000 synthesized and ordered compounds are also reported with the corresponding activity in Mpro enzymatic assays using two different experimental setups. The data referenced in this document will be continually updated to reflect the current experimental progress of the COVID Moonshot project, and serves as a citable reference for ensuing publications. All of the generated data is open to other researchers who may find it of use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.