The first practical method to evolve many-body nuclear forces to softened form using the similarity renormalization group in a harmonic oscillator basis is demonstrated. When applied to 4He calculations, the two- and three-body oscillator matrix elements yield rapid convergence of the ground-state energy with a small net contribution of the induced four-body force.
In recent years, the Similarity Renormalization Group has provided a powerful and versatile means to soften interactions for ab initio nuclear calculations. The substantial contribution of both induced and initial three-body forces to the nuclear interaction has required the consistent evolution of free-space Hamiltonians in the three-particle space. We present the most recent progress on this work, extending the calculational capability to the p-shell nuclei and showing that the hierarchy of induced many-body forces is consistent with previous estimates. Calculations over a range of the flow parameter for 6 Li, including fully evolved NN+3N interactions, show moderate contributions due to induced four-body forces and display the same improved convergence properties as in lighter nuclei. A systematic analysis provides further evidence that the hierarchy of many-body forces is preserved.
The Similarity Renormalization Group (SRG) is used to soften interactions for ab initio nuclear structure calculations by decoupling low-and high-energy Hamiltonian matrix elements. The substantial contribution of both initial and SRG-induced three-nucleon forces requires their consistent evolution in a three-particle basis space before applying them to larger nuclei. While in principle the evolved Hamiltonians are unitarily equivalent, in practice the need for basis truncation introduces deviations, which must be monitored. Here we present benchmark no-core full configuration calculations with SRG-evolved interactions in p-shell nuclei over a wide range of softening. These calculations are used to assess convergence properties, extrapolation techniques, and the dependence of energies, including four-body contributions, on the SRG resolution scale.
A one-dimensional system of bosons with short-range repulsion and mid-range attraction is used as a laboratory to explore the evolution of many-body forces by the Similarity Renormalization Group (SRG). The free-space SRG is implemented for few-body systems in a symmetrized harmonic oscillator basis using a recursive construction analogous to no-core shell model implementations. This approach, which can be directly generalized to three-dimensional nuclei, is fully unitary up to induced A-body forces when applied with an A-particle basis (e.g., A-body bound-state energies are exactly preserved). The oscillator matrix elements for a given A can then be used in larger systems. Errors from omitted induced many-body forces show a hierarchy of decreasing contribution to binding energies. An analysis of individual contributions to the growth of many-body forces demonstrates such a hierarchy and provides an understanding of its origins.
Decoupling via the Similarity Renormalization Group (SRG) of low-energy nuclear physics from high-energy details of the nucleon-nucleon interaction is examined for two-body observables and few-body binding energies. The universal nature of this decoupling is illustrated and errors from suppressing high-momentum modes above the decoupling scale are shown to be perturbatively small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.