Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel member of the secretin-glucagon peptide family. In mammals, this peptide has been located in a wide range of tissues and is involved in a variety of biological functions. In lower vertebrates, especially fish, increasing evidence suggests that PACAP may function as a hypophysiotropic factor regulating pituitary hormone secretion. PACAP has been identified in the brain-pituitary axis of representative fish species. The molecular structure of fish PACAP is highly homologous to mammalian PACAP. The prepro-PACAP in fish, however, is distinct from that of mammals as it also contains the sequence of fish GHRH. In teleosts, the anterior pituitary is under direct innervation of the hypothalamus and PACAP nerve fibers have been identified in the pars distalis. Using the goldfish as a fish model, mRNA transcripts of PACAP receptors, namely the PAC1 and VPACI receptors, have been identified in the pituitary as well as in various brain areas. Consistent with the pituitary expression of PACAP receptors, PACAP analogs are effective in stimulating growth hormone (GH) and gonadotropin (GTH)-II secretion in the goldfish both in vivo and in vitro. The GH-releasing action of PACAP is mediated via pituitary PAC1 receptors coupled to the adenylate cyclase-cAMP-protein kinase A and phospholipase C-IP3-protein kinase C pathways. Subsequent stimulation of Ca2+ entry through voltage-sensitive Ca2+ channels followed by activation of Ca2+-calmodulin protein kinase II is likely the downstream mechanism mediating PACAP-stimulated GH release in goldfish. Although the PACAP receptor subtype(s) and the associated post-receptor signaling events responsible for PACAP-stimulated GTH-II release have not been characterized in goldfish, these findings support the hypothesis that PACAP is produced in the hypothalamus and delivered to the anterior pituitary to regulate GH and GTH-II release in fish.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a member of the glucagon/secretin peptide family and its molecular structure is highly conserved among vertebrates. In this study, the role of PACAP in regulating growth hormone (GH) secretion in fish was examined in vitro using common carp pituitary cells under column perifusion. A dose-dependent increase in GH release was observed after exposing pituitary cells to increasing doses of ovine PACAP38 (oPACAP38) and PACAP27 (oPACAP27), but not vasoactive intestinal polypeptide (VIP). A lack of GH response to VIP stimulation is consistent with the pharmacological properties of PAC-1 receptors, suggesting that this receptor subtype may be involved in PACAP-induced GH secretion in carp species. Although the maximal GH responses induced by oPACAP38 and oPACAP27 were similar, the minimal effective dose and ED50 value for oPACAP38 were significantly lower than that for oPACAP27. These results may indicate that common carp PAC-1 receptors are more sensitive to stimulation by oPACAP38 than by oPACAP27. In parallel studies, oPACAP38 and oPACAP27 were also effective in increasing cAMP release, cellular cAMP content, total cAMP production, and intracellular Ca2+ ([Ca2+]i) levels in common carp pituitary cells. Besides, the rise in [Ca2+]i induced by oPACAP38 was blocked by removing extracellular Ca2+ ([Ca2+]e) or by treatment with nifedipine, an inhibitor of voltage-sensitive Ca2+ channels (VSCC). The dose dependence of PACAP-stimulated GH release in common carp pituitary cells was mimicked by activating adenylate cyclase using forskolin, inhibiting cAMP degradation using IBMX, increasing functional levels of intracellular cAMP using CPT-cAMP, or inducing [Ca2+]e entry using the Ca2+ ionophore A23187. In contrast, the GH-releasing effect of oPACAP38 was suppressed by treatment with the adenylate cyclase inhibitor MDL12330A, protein kinase A inhibitor H89, and VSCC blocker nifedipine, or by perifusion with a Ca2+-free culture medium. These results, as a whole, suggest that PACAP functions as a GH-releasing factor in common carp by activating pituitary receptors resembling mammalian PAC-1 receptors. Apparently, the GH-releasing action of PACAP is mediated through the adenylate cyclase/cAMP/protein kinase A pathway and [Ca2+]e influx through VSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.