Biotrophic eukaryotic plant pathogens require a living host for their growth and form an intimate haustorial interface with parasitized cells. Evolution to biotrophy occurred independently in fungal rusts and powdery mildews, and in oomycete white rusts and downy mildews. Biotroph evolution and molecular mechanisms of biotrophy are poorly understood. It has been proposed, but not shown, that obligate biotrophy results from (i) reduced selection for maintenance of biosynthetic pathways and (ii) gain of mechanisms to evade host recognition or suppress host defence. Here we use Illumina sequencing to define the genome, transcriptome, and gene models for the obligate biotroph oomycete and Arabidopsis parasite, Albugo laibachii. A. laibachii is a member of the Chromalveolata, which incorporates Heterokonts (containing the oomycetes), Apicomplexa (which includes human parasites like Plasmodium falciparum and Toxoplasma gondii), and four other taxa. From comparisons with other oomycete plant pathogens and other chromalveolates, we reveal independent loss of molybdenum-cofactor-requiring enzymes in downy mildews, white rusts, and the malaria parasite P. falciparum. Biotrophy also requires “effectors” to suppress host defence; we reveal RXLR and Crinkler effectors shared with other oomycetes, and also discover and verify a novel class of effectors, the “CHXCs”, by showing effector delivery and effector functionality. Our findings suggest that evolution to progressively more intimate association between host and parasite results in reduced selection for retention of certain biosynthetic pathways, and particularly reduced selection for retention of molybdopterin-requiring biosynthetic pathways. These mechanisms are not only relevant to plant pathogenic oomycetes but also to human pathogens within the Chromalveolata.
The formation of haustoria is one of the hallmarks of the interaction of obligate biotrophic fungi with their host plants. In addition to their role in nutrient uptake, it is hypothesized that haustoria are actively involved in establishing and maintaining the biotrophic relationship. We have identified a 24.3-kDa protein that exhibited a very unusual allocation. Rust transferred protein 1 from Uromyces fabae (Uf-RTP1p) was not only detected in the host parasite interface, the extrahaustorial matrix, but also inside infected plant cells by immunofluorescence and electron microscopy. Uf-RTP1p does not exhibit any similarity to sequences currently listed in the public databases. However, we identified a homolog of Uf-RTP1p in the related rust fungus Uromyces striatus (Us-RTP1p). The localization of Uf-RTP1p and Us-RTP1p inside infected plant cells was confirmed, using four independently raised polyclonal antibodies. Depending on the developmental stage of haustoria, Uf-RTP1p was found in increasing amounts in host cells, including the host nucleus. Putative nuclear localization signals (NLS) were found in the predicted RTP1p sequences. However, functional efficiency could only be verified for the Uf-RTP1p NLS by means of green fluorescent protein fusions in transformed tobacco protoplasts. Western blot analysis indicated that Uf-RTP1p and Us-RTP1p most likely enter the host cell as N-glycosylated proteins. However, the mechanism by which they cross the extrahaustorial membrane and accumulate in the host cytoplasm is unknown. The localization of RTP1p suggests that it might play an important role in the maintenance of the biotrophic interaction.
The exchange of small RNAs (sRNAs) between hosts and pathogens can lead to gene silencing in the recipient organism, a mechanism termed cross-kingdom RNAi (ck-RNAi). While fungal sRNAs promoting virulence are established, the significance of ck-RNAi in distinct plant pathogens is not clear. Here, we describe that sRNAs of the pathogen Hyaloperonospora arabidopsidis, which represents the kingdom of oomycetes and is phylogenetically distant from fungi, employ the host plant’s Argonaute (AGO)/RNA-induced silencing complex for virulence. To demonstrate H. arabidopsidis sRNA (HpasRNA) functionality in ck-RNAi, we designed a novel CRISPR endoribonuclease Csy4/GUS reporter that enabled in situ visualization of HpasRNA-induced target suppression in Arabidopsis. The significant role of HpasRNAs together with AtAGO1 in virulence was revealed in plant atago1 mutants and by transgenic Arabidopsis expressing a short-tandem-target-mimic to block HpasRNAs, that both exhibited enhanced resistance. HpasRNA-targeted plant genes contributed to host immunity, as Arabidopsis gene knockout mutants displayed quantitatively enhanced susceptibility.
Only few fungal effectors have been described to be delivered into the host cell during obligate biotrophic interactions. RTP1p, from the rust fungi Uromyces fabae and U. striatus, was the first fungal protein for which localization within the host cytoplasm could be demonstrated directly. We investigated the occurrence of RTP1 homologues in rust fungi and examined the structural and biochemical characteristics of the corresponding gene products. The analysis of 28 homologues showed that members of the RTP family are most likely to occur ubiquitously in rust fungi and to be specific to the order Pucciniales. Sequence analyses indicated that the structure of the RTPp effectors is bipartite, consisting of a variable N-terminus and a conserved and structured C-terminus. The characterization of Uf-RTP1p mutants showed that four conserved cysteine residues sustain structural stability. Furthermore, the C-terminal domain exhibits similarities to that of cysteine protease inhibitors, and it was shown that Uf-RTP1p and Us-RTP1p are able to inhibit proteolytic activity in Pichia pastoris culture supernatants. We conclude that the RTP1p homologues constitute a rust fungi-specific family of modular effector proteins comprising an unstructured N-terminal domain and a structured C-terminal domain, which exhibit protease inhibitory activity possibly associated with effector function during biotrophic interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.