Introduction
Background and RationalePeatlands are organic-rich wetlands that provide important ecosystem services at a range of spatial scales (Kimmel & Mander, 2010). Local hydrological setting is of central importance in determining the characteristics and functions of these ecosystems (Siegel & Glaser, 2006). Peatlands are characterized by waterlogged, anoxic conditions that suppress microbial decomposition, causing carbon to accumulate slowly but persistently over thousands of years in the form of partially decomposed plant detritus (Yu et al., 2010). Peatlands cover less than 3% of the Earth's land surface (Xu et al., 2018b) yet they are thought to store between approximately 500 and 600 Gt (5-6 × 10 17 g) of carbon (Müller & Joos, 2020;Page et al., 2011;Yu, 2011Yu, , 2012, equivalent to between approximately one sixth and one third of global soil carbon (Scharlemann et al., 2014). As well as being long-term carbon sinks, peatlands also emit greenhouse gases, particularly carbon dioxide (CO 2 ) and methane. Peatland greenhouse gas budgets are highly sensitive to surface wetness, and even modest changes in water-table depths can cause peatlands to switch between being net sinks and sources of greenhouse gases when measured in CO 2 -equivalent units (Evans et al., 2021;Günther et al., 2020). In some locations, water that drains from peat
Oil sands development within the Athabasca Oil Sands Region (AOSR) has accelerated in recent decades, causing alteration to natural ecosystems including wetlands that perform many vital ecosystem functions such as water and carbon storage. These wetlands comprise more than half of the landscape, and their distribution and local hydrology are the result of interactions among a subhumid climate, topography, and spatially heterogeneous surficial and bedrock geology. Since hydrology plays a fundamental role in wetland ecological functioning and determines wetland sensitivity to human disturbances, the characterization of anthropogenic impacts on wetland hydrology in the AOSR is necessary to assess wetland resilience and to improve current best management practices. As such, this paper reviews the impacts of oil sands development and related disturbances including infrastructure construction, gravel extraction, and land clearing on wetland function in the AOSR. Hydrologic disturbances in wetlands in the AOSR include changes to soil hydrophysical properties that control water table position, the interruption of recharge–discharge patterns, and alteration of micrometeorological conditions; these in turn govern wetland ecological structure and wetland ecosystem processes (e.g., evapotranspiration, nutrient cycling). Given that anthropogenic disturbance can affect natural wetland succession, long-term hydrological monitoring is crucial for predicting the response of these ecosystems to varying levels of human impact.
Current efforts to assess changes to the wetland hydrology caused by growing anthropogenic pressures in the Athabasca Oil Sands Region (AOSR) require well-founded spatial and temporal estimates of actual evapotranspiration (ET), which is the dominant component of the water budget in this region. This study assessed growing season (May-September) and peak growing season (July) ET variability at a treed moderaterich fen and treed poor fen (in 2013-2018), open poor fen (in 2011-2014), and saline fen (in 2015-2018) using eddy covariance technique and a set of complementary environmental data. Seasonal fluctuations in ET were positively related to net radiation, air temperature and vapour pressure deficit and followed trends typical for the Boreal Plains (BP) and AOSR with highest rates in June-July. However, no strong effect of water table position on ET was found. Strong surface control on ET is evident from lower ET values than potential evapotranspiration (PET); the lowest ET/PET was observed at saline fen, followed by open fen, moderately treed fen, and heavily treed fen, suggesting a strong influence of vegetation on water loss. In most years PET exceeded precipitation (P), and positive relations between P/PET and ET were observed with the highest July ET rates occurring under P/PET 1. However, during months with P/PET > 1, increased P/PET was associated with decreased July ET. With respect to 30-year mean values of air temperature and P in the area, both dry and wet, cool and warm growing seasons (GS) were observed. No clear trends between ET values and GS wetness/coldness were found, but all wet GS were characterized by peak growing seasons with high daily ET variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.