The liver is the central organ involved in lipid metabolism. Dyslipidemia and its related disorders, including non-alcoholic fatty liver disease (NAFLD), obesity and other metabolic diseases, are of increasing public health concern due to their increasing prevalence in the population. Besides their well-characterized functions in cholesterol homoeostasis and nutrient absorption, bile acids are also important metabolic regulators and function as signaling hormones by activating specific nuclear receptors, G-protein coupled receptors, and multiple signaling pathways. Recent studies identified a new signaling pathway by which conjugated bile acids (CBA) activate the extracellular regulated protein kinases (ERK1/2) and protein kinase B (AKT) signaling pathway via sphingosine-1-phosphate receptor 2 (S1PR2). CBA-induced activation of S1PR2 is a key regulator of sphingosine kinase 2 (SphK2) and hepatic gene expression. This review focuses on recent findings related to the role of bile acids/S1PR2-mediated signaling pathways in regulating hepatic lipid metabolism.
Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF-Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrfl attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation.
Nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are some of the most common liver diseases worldwide. The human gut microbiome is dynamic and shifts in bacterial composition have been implicated in many diseases. Studies have shown that there is a shift in bacterial overgrowth favoring pro-inflammatory mediators in patients with advanced disease progression such as cirrhosis. Further investigation demonstrated that the transplantation of gut microbiota from advanced liver disease patients can reproduce severe liver inflammation and injury in mice. Various techniques in manipulating the gut microbiota have been attempted including fecal transplantation and probiotics. This review focuses on the changes in the gut microbiota as well as emerging lines of microbiome work with respect to NAFLD and ALD.
The ever-increasing prevalence of metabolic diseases such as dyslipidemia and diabetes in the western world continues to be of great public health concern. Biologically active sphingolipids, such as sphingosine 1-phosphate (S1P) and ceramide, are important regulators of lipid metabolism. S1P not only directly functions as an active intracellular mediator, but also activates multiple signaling pathways via five transmembrane G-protein coupled receptors (GPCRs), S1PR1-5. S1P is exclusively formed by sphingosine kinases (SphKs). Two isoforms of SphKs, SphK1 and SphK2, have been identified. Recent identification of the conjugated bile acid-induced activation of S1PR2 as a key regulator of SphK2 opened new directions for both the sphingolipid and bile acid research fields. The role of SphKs/S1P-mediated signaling pathways in health and various human diseases has been extensively reviewed elsewhere. This review focuses on recent findings related to SphKs/S1P-medaited signaling pathways in regulating hepatic lipid metabolism.
Alcoholic liver disease (ALD) is one of the most common liver diseases worldwide characterized by the accumulation of lipids within the liver, inflammation and the possibility of progressing to cirrhosis and liver failure. More importantly, there are currently no effective treatments for ALD and liver transplantation remains the only therapeutic option for end-stage liver disease. Previous studies have shown that ALD is a result of a combination of endoplasmic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.