Background: Complex human diseases are defined not only by sophisticated patterns of genetic variants/mutations upstream but also by many interplaying genes, RNAs, and proteins downstream. Analyzing multiple genomic and functional genomic data types to determine a short list of genes or molecules of interest is a common task called ″gene prioritization″ in biology. There are many statistical, biological, and bioinformatic methods developed to perform gene prioritization tasks. However, little research has been conducted to examine the relationships among the technique used, merged/separate use of each data modality, the gene list′s network/pathway context, and various gene ranking/expansions. Methods: We introduce a new analytical framework called ″Gene Ranking and Iterative Prioritization based on Pathways″ (GRIPP) to prioritize genes derived from different modalities. Multiple data sources, such as CBioPortal, PAGER, and COSMIC were used to compile the initial gene list. We used the PAGER software to expand the gene list based on biological pathways and the BEERE software to construct protein-protein interaction networks that include the gene list to rank order genes. We produced a final gene list for each data modality iteratively from an initial draft gene list, using glioblastoma multiform (GBM) as a case study. Conclusion: We demonstrated that GBM gene lists obtained from three modalities (differential gene expressions, gene mutations, and copy number alterations) and several data sources could be iteratively expanded and ranked using GRIPP. While integrating various modalities of data can be useful to generate an integrated ranked gene list related to any specific disease, the integration may also decrease the overall significance of ranked genes derived from specific data modalities. Therefore, we recommend carefully sorting and integrating gene lists according to each modality, such as gene mutations, epigenetic controls, or differential expressions, to procure modality-specific biological insights into the prioritized genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.