Tenenbaum et al. (1) presented an algoof Isomap has long been known, and the new component introduced by Tenenbaum et al. provides an unreliable estimate of surface connectivity, which can lead to failure of the algorithm to perform as claimed.
The retinotopic mapping of the visual field to the surface of the striate cortex is characterized as a logarithmic conformal mapping. This summarizes in a concise way the observed curve of cortical magnification, the linear scaling of receptive field size with eccentricity, and the mapping of global visual field landmarks. It is shown that if this global structure is reiterated at the local level, then the sequence regularity of the simple cells of area 17 may be accounted for as well. Recently published data on the secondary visual area, the medial visual area, and the inferior pulvinar of the owl monkey suggests that the same global logarithmic structure holds for these areas as well. The available data on the structure of the somatotopic mapping (area S-1) supports a similar analysis. The possible relevance of the analytical form of the cortical receptotopic maps to perception is examined and a brief discussion of the developmental implications of these findings is presented.
Previous studies demonstrated substantial variability of the location of primary visual cortex (V1) in stereotaxic coordinates when linear volume-based registration is used to match volumetric image intensities (Amunts et al., 2000). However, other qualitative reports of V1 location (Smith, 1904;Stensaas et al., 1974;Rademacher et al., 1993) suggested a consistent relationship between V1 and the surrounding cortical folds. Here, the relationship between folds and the location of V1 is quantified using surface-based analysis to generate a probabilistic atlas of human V1. High-resolution (about 200 μm) magnetic resonance imaging (MRI) at 7 T of ex vivo human cerebral hemispheres allowed identification of the full area via the stria of Gennari: a myeloarchitectonic feature specific to V1. Separate, whole-brain scans were acquired using MRI at 1.5 T to allow segmentation and mesh reconstruction of the cortical gray matter. For each individual, V1 was manually identified in the high-resolution volume and projected onto the cortical surface. Surface-based intersubject registration (Fischl et al., 1999b) was performed to align the primary cortical folds of individual hemispheres to those of a reference template representing the average folding pattern. An atlas of V1 location was constructed by computing the probability of V1 inclusion for each cortical location in the template space. This probabilistic atlas of V1 exhibits low prediction error compared to previous V1 probabilistic atlases built in volumetric coordinates. The increased predictability observed under surface-based registration suggests that the location of V1 is more accurately predicted by the cortical folds than by the shape of the brain embedded in the volume of the skull. In addition, the high quality of this atlas provides direct evidence that surface-based intersubject registration methods are superior to volume-based methods at superimposing functional areas of cortex, and therefore are better suited to support multi-subject averaging for functional imaging experiments targeting the cerebral cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.