Covalent organic frameworks (COFs), in which molecular building blocks form robust microporous networks, are usually synthesized as insoluble and unprocessable powders. We have grown two-dimensional (2D) COF films on single-layer graphene (SLG) under operationally simple solvothermal conditions. The layered films stack normal to the SLG surface and show improved crystallinity compared with COF powders. We used SLG surfaces supported on copper, silicon carbide, and transparent fused silica (SiO(2)) substrates, enabling optical spectroscopy of COFs in transmission mode. Three chemically distinct COF films grown on SLG exhibit similar vertical alignment and long-range order, and two of these are of interest for organic electronic devices for which thin-film formation is a prerequisite for characterizing their optoelectronic properties.
Covalent organic frameworks (COFs) offer a new strategy for assembling organic semiconductors into robust networks with atomic precision and long-range order. General methods for COF synthesis will allow complex building blocks to be incorporated into these emerging materials. Here we report a new Lewis acid-catalysed protocol to form boronate esters directly from protected catechols and arylboronic acids. This transformation also provides crystalline boronate ester-linked COFs from protected polyfunctional catechols and bis(boronic acids). Using this method, we prepared a new COF that features a square lattice composed of phthalocyanine macrocycles joined by phenylene bis(boronic acid) linkers. The phthalocyanines stack in an eclipsed fashion within the COF to form 2.3 nm pores that run parallel to the stacked chromophores. The material's broad absorbance over the solar spectrum, potential for efficient charge transport through the stacked phthalocyanines, good thermal stability and the modular nature of COF synthesis, show strong promise for applications in organic photovoltaic devices.
Two-dimensional layered covalent organic frameworks (2D COFs) organize π-electron systems into ordered structures ideal for exciton and charge transport and exhibit permanent porosity available for subsequent functionalization. A 2D COF with the largest pores reported to date was synthesized by condensing 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 4,4'-diphenylbutadiynebis(boronic acid) (DPB). The COF was prepared as both a high surface area microcrystalline powder as well as a vertically oriented thin film on a transparent single-layer graphene/fused silica substrate. Complementary molecular dynamics and density functional theory calculations provide insight into the interlayer spacing of the COF and suggest that adjacent layers are horizontally offset by 1.7-1.8 Å, in contrast to the eclipsed AA stacking typically proposed for these materials.
Expanding into application: covalent organic framework (COF) films are ideally suited for vertical charge transport and serve as precursors of ordered heterojunctions. Their pores, however, were previously too small to accommodate continuous networks of complementary electron acceptors. Four phthalocyanine COFs with increased pore size well into the mesoporous regime are now described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.