Silicon nitride undergoes hydrolysis and dissolution when subjected to an aqueous environment. Molecular dynamics simulations suggest that hydrolysis proceeds through nucleophilic attack of water with the formation of an intermediate molecular complex involving a pentacoordinated silicon. We found that the dissolution of an oxidized silicon nitride powder resembles that of silica; the dissolution rate could be described using a simple kinetic equation with a dissolution activation energy of 52 kJ⅐mol ؊1 . The deagglomeration of a fine silicon nitride powder under mild agitation was evaluated; we show that the peptization kinetics at room temperature is dominated by the breakup of particle-particle bonds due to hydrodynamic friction and cluster attrition. For breakup of hard agglomerates of small particles the dissolution of interparticle necks will play an important role.
We have investigated the effect of polymeric dispersants on the rheological properties and consolidation behavior of concentrated cemented carbide (WC-Co) and magnesia (MgO) suspensions. The relatively novel types of comb-type anionic polymers with grafted non-ionic side chains are effective dispersants also in multi-component powder mixtures with a complex solution and surface chemistry and result in more robust suspensions at significantly higher solids loading compared with e.g., a traditional cationic polyelectrolyte. Direct force measurements on comb-type dispersants with different lengths of the grafted ethylene oxide side chains showed that the dispersants adsorb onto a MgO surface and infer a repulsion where the range scales with the length of the poly ethylene oxide side chains. The compressibility and the consolidation behavior of MgO particle networks in response to a centrifugal force field could be related to the estimated thickness of the adsorbed comb-type dispersants.
Direct measurements of forces between silicon nitride surfaces in the presence of poly(acrylic acid) (PAA) are presented. The force-distance curves were obtained at pH > pH iep with an atomic force microscopy (AFM) colloidal-probe technique using a novel spherical silicon nitride probe attached to the AFM cantilever. We found that PAA adsorbs onto the negatively charged silicon nitride surface, which results in an increased repulsive surface potential. The steric contribution to the interparticle repulsion is small and the layer conformation remains flat even at high surface potentials or high ionic strength. The general features of the stabilization of ceramic powders with PAA are discussed; we suggest that PAA adsorbs onto silicon nitride by sequential adsorption of neighboring segments ("zipping"), which results in a flat conformation. In contrast, the long-range steric force found in the ZrO 2 /PAA system at pH > pH iep arises because the stretched equilibrium bulk conformation of the highly charged polymer is preserved via the formation of strong, irreversible surface-segment bonds on adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.