One of the principal goals in functional magnetic resonance imaging (fMRI) is the detection of local activation in the human brain. However, lack of statistical power and inflated false positive rates have recently been identified as major problems in this regard. Here, we propose a non-parametric and threshold-free framework called LISA to address this demand. It uses a non-linear filter for incorporating spatial context without sacrificing spatial precision. Multiple comparison correction is achieved by controlling the false discovery rate in the filtered maps. Compared to widely used other methods, it shows a boost in statistical power and allows to find small activation areas that have previously evaded detection. The spatial sensitivity of LISA makes it especially suitable for the analysis of high-resolution fMRI data acquired at ultrahigh field (≥7 Tesla).
Reproducibility is generally regarded as a hallmark of scientific validity. It can be undermined by two very different factors, namely inflated false positive rates or inflated false negative rates. Here we investigate the role of the second factor, i.e. the degree to which true effects are not detected reliably. The availability of large public databases and also supercomputing allows us to tackle this problem quantitatively. Specifically, we estimated the reproducibility in task-based fMRI data over different samples randomly drawn from a large cohort of subjects obtained from the Human Connectome Project. We use the full cohort as a standard of reference to approximate true positive effects, and compute the fraction of those effects that was detected reliably using standard software packages at various smaller sample sizes. We found that with standard sample sizes this fraction was less than 25 percent. We conclude that inflated false negative rates are a major factor that undermine reproducibility. We introduce a new statistical inference algorithm based on a novel test statistic and show that it improves reproducibility without inflating false positive rates.
A number of recent studies have investigated machine learning techniques for predicting individual behaviour from fMRI. Even though encouraging results have been obtained, excessive scan times – especially in resting state fMRI – are a limiting factor.Here we present a new machine learning algorithm for predicting individual behaviour of healthy human subjects using both resting state (rsfMRI) as well as task-based fMRI (tfMRI). It achieves dimensionality reduction via ensemble learning and partial least squares regression rather than via brain parcellations or ICA decompositions. In addition, it introduces Ricci-Forman curvature as a novel type of edge weight.As a proof of concept, we focus on predicting fluid, crystallized and general intelligence scores. In a cohort of 390 unrelated test subjects of the Human Connectome Project, we found correlations between the observed and the predicted general intelligence of more than 50 percent in tfMRI, and of around 59 percent (R2 ≈ 0.29) when results from two tasks are combined. We compare these results against a benchmark of existing methods that produced correlations below 50 percent in both rsfMRI and tfMRI. We conclude that with novel machine learning techniques applied to tfMRI it is possible to obtain significantly better prediction accuracies at a fraction of the scan time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.