Background Limited data have been available on the global practice of handwashing with soap (HWWS). To better appreciate global HWWS frequency, which plays a role in disease transmission, our objectives were to: (i) quantify the presence of designated handwashing facilities; (ii) assess the association between handwashing facility presence and observed HWWS; and (iii) derive country, regional and global HWWS estimates after potential faecal contact. Methods First, using data from national surveys, we applied multilevel linear modelling to estimate national handwashing facility presence. Second, using multilevel Poisson modelling on datasets including both handwashing facility presence and observed HWWS after potential faecal contact, we estimated HWWS prevalence conditional on handwashing facility presence by region. For high-income countries, we used meta-analysis to pool handwashing prevalence of studies identified through a systematic review. Third, from the modelled handwashing facility presence and estimated HWWS prevalence conditional on the presence of a handwashing facility, we estimated handwashing practice at country, regional and global levels. Results First, approximately one in four persons did not have a designated handwashing facility in 2015, based on 115 data points for 77 countries. Second the prevalence ratio between HWWS when a designated facility was present compared with when it was absent was 1.99 (1.66, 2.39) P <0.001 for low- and middle-income countries, based on nine datasets. Third, we estimate that in 2015, 26.2% (23.1%, 29.6%) of potential faecal contacts were followed by HWWS. Conclusions Many people lack a designated handwashing facility, but even among those with access, HWWS is poorly practised. People with access to designated handwashing facilities are about twice as likely to wash their hands with soap after potential faecal contact as people who lack a facility. Estimates are based on limited data.
A main focus of recent R&D on adsorption modules for thermally driven heat pumps and chillers has been to enhance the volume specific power output while maintaining a reasonable coefficient of performance (COP).An adsorption module using a new type of heat exchanger based on aluminum sintered metal fiber structures brazed on flat fluid channels has been developed. The heat exchangers for adsorber/desorber and evaporator/condenser are identically constructed. The adsorption heat exchanger is coated with a silico-alumino phosphate (SAPO-34) by a partial support transformation direct crystallization (PST) [1]. Both components are placed in a vacuum tight housing using a valve-free configuration. Water is used as adsorptive. The experimental characterization of the module shows a high volume specific power (up to 82 W/litre module for cooling, 320 W/litre for heating). Although no heat is recovered between ad- and desorption cycle, a COP of almost 0.4 is reached for cooling and 1.4 for heating. Driving temperature differences are defined for the analysis of the heat exchanger performance. The evaporator/condenser shows extremely good performance with about 240 W/K specific evaporation power per litre of heat exchanger, while the adsorber is limiting the module performance
The thermal masses of components influence the performance of many adsorption heat pump systems. However, typically when experimental adsorption systems are reported, data on thermal mass are missing or incomplete. This work provides original measurements of the thermal masses for experimental sorption heat exchanger hardware. Much of this hardware was previously reported in the literature, but without detailed thermal mass data. The data reported in this work are the first values reported in the literature to thoroughly account for all thermal masses, including heat transfer fluid. The impact of thermal mass on system performance is also discussed, with detailed calculation left for future work. The degree to which heat transfer fluid contributes to overall effective thermal mass is also discussed, with detailed calculation left for future work. This work provides a framework for future reporting of experimental thermal masses. The utilization of this framework will enrich the data available for model validation and provide a more thorough accounting of adsorption heat pumps.
Thermally-driven heat pumps can help to mitigate CO 2 emissions by enhancing the efficiency of heating systems or by driving cooling systems with waste or solar heat. In order to make the thermally-driven systems more attractive for the end consumer, these systems need a higher power density. A higher power density can be achieved by intensifying the heat and mass transfer processes within the adsorption heat exchanger. For the optimization of this key component, a numerical model of the non-isothermal adsorption dynamics can be applied. The calibration of such a model can be difficult, since heat and mass transfer processes are strongly coupled. We present a measurement and simulation procedure that makes it possible to calibrate the heat transfer part of the numerical model separately from the mass transfer part. Furthermore, it is possible to identify the parts of the model that need to be improved. For this purpose, a modification of the well-known large temperature jump method is developed. The newly-introduced measurements are conducted under an inert N 2 atmosphere, and the surface temperature of the sample is measured with an infrared sensor. We show that the procedure is applicable for two completely different types of samples: a loose grains configuration and a fibrous structure that is directly crystallized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.