As an emerging cash crop, industrial hemp (Cannabis sativa L.) grown for cannabidiol (CBD) has spurred a surge of interest in the United States. Cultivar selection and harvest timing are important to produce CBD hemp profitably and avoid economic loss resulting from the tetrahydrocannabinol (THC) concentration in the crop exceeding regulatory limits. Hence there is a need for differentiating CBD hemp cultivars and growth stages to aid in cultivar and genotype selection and optimization of harvest timing. Current methods that rely on visual assessment of plant phenotypes and chemical procedures are limited because of its subjective and destructive nature. In this study, hyperspectral imaging was proposed as a novel, objective, and non-destructive method for differentiating hemp cultivars, growth stages as well as plant organs (leaves and flowers). Five cultivars of CBD hemp were grown greenhouse conditions and leaves and flowers were sampled at five growth stages 2–10 weeks in 2-week intervals after flower initiation and scanned by a benchtop hyperspectral imaging system in the spectral range of 400–1000 nm. The acquired images were subjected to image processing procedures to extract the spectra of hemp samples. The spectral profiles and scatter plots of principal component analysis of the spectral data revealed a certain degree of separation between hemp cultivars, growth stages, and plant organs. Machine learning based on regularized linear discriminant analysis achieved the accuracy of up to 99.6% in differentiating the five hemp cultivars. Plant organ and growth stage need to be factored into model development for hemp cultivar classification. The classification models achieved 100% accuracy in differentiating the five growth stages and two plant organs. This study demonstrates the effectiveness of hyperspectral imaging for differentiating cultivars, growth stages and plant organs of CBD hemp, which is a potentially useful tool for growers and breeders of CBD hemp.
The objectives of this study were to model the temporal accumulation of cannabidiol (CBD) and tetrahydrocannabinol (THC) in field-grown floral hemp in North Carolina and establish harvest timing recommendations to minimize non-compliant crop production. Field trials were conducted in 2020 and 2021 with BaOx and Cherry Wine cultivars. Harvest events started two weeks after floral initiation and occurred every two weeks for 12 weeks. Per-plant threshed biomass accumulation exhibited a linear plateau trend. The best fit model for temporal accumulation of THC was a beta growth curve. As harvest date was delayed, total THC concentrations increased until concentrations reached their maximum, then decreased as plants approached senescence. Logistic regression was the best fit model for temporal accumulation of CBD. CBD concentrations increased with later harvest dates. Unlike THC concentrations, there was no decline in total CBD concentrations. To minimize risk, growers should test their crop as early as possible within the USDA’s 30-day compliance window. We observed ‘BaOx’ and ‘Cherry Wine’ exceeding the compliance threshold 50 and 41 days after flower initiation, respectively.
Floral hemp cultivated for the extraction of cannabinoids is a new crop in the United States, and agronomic recommendations are scarce. The objective of this study was to understand the effects of plant spacing and transplant date on floral hemp growth and biomass production. Field trials were conducted in North Carolina in 2020 and 2021 with the floral hemp cultivar BaOx. Transplant date treatments occurred every two weeks from 11 May to 7 July (±1 d). Plant spacing treatments were 0.91, 1.22, 1.52, and 1.83 m between plants. Weekly height and width data were collected throughout the vegetative period, and dry biomass was measured at harvest. Plant width was affected by transplant date and spacing. Plant height was affected by transplant date. Earlier transplant dates resulted in taller, wider plants, while larger plant spacing resulted in wider plants. Individual plant biomass increased with earlier transplant dates and larger plant spacing. On a per-hectare basis, biomass increased with earlier transplant dates and smaller transplant spacing. An economic analysis found that returns were highest with 1.22 m spacing and decreased linearly by a rate of −163.098 USD ha−1 d−1. These findings highlight the importance of earlier transplant timing to maximize harvestable biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.