Despite their intrinsic hydrolysable character, imine bonds can become remarkably stable in water when selfassembled in amphiphilic micellar structures. In this work, we systematically studied some of these structures and the influence of various parameters that can be used to take control of their hydrolysis, including pH, concentration, the position of the imine function in the amphiphilic structure, relative lengths of the linked hydrophilic and hydrophobic moieties. Thermodynamic and kinetic data led us to the rational design of stable imines in water, partly based on the location of the imine function within the hydrophobic part of the amphiphile and on a predictable quantitative term that we define as the total hydrophilic-lipophilic balance (HLB). In addition, we show that such stable systems are also stimuliresponsive and therefore, of potential interest in trapping and releasing micellar components on demand.
Amphiphilic imines prepared by condensation of a hydrophobic fragrance aldehyde with a hydrophilic amine derived from a poly(propylene oxide) and poly(ethylene oxide) diblock copolymer were investigated as cleavable surfactant profragrances in applications of functional perfumery. In water, the cleavable surfactants assemble into micelles that allow solubilization of perfume molecules that are not covalently attached to the surfactant. Dynamic headspace analysis on a glass surface showed that solubilized perfume molecules evaporated in a similar manner in the presence of the cleavable surfactant as compared with a non-cleavable reference surfactant. Under application conditions, the cleavable surfactant imine hydrolysed to release the covalently linked fragrance aldehyde. The profragrances were stable during storage in aqueous media, and upon dilution showed a blooming effect for the hydrolytical fragrance release and a more balanced performance of a solubilized perfume by retaining the more volatile fragrances and boosting the evaporation of the less volatile fragrances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.