Defects in the intestinal immune system may contribute to the pathogenesis of autoimmune diseases. Intraepithelial lymphocytes represent a substantial fraction of gut-associated lymphocytes, but their function in mucosal immunity is unclear. A newly described population of NK cells that spontaneously secrete IL-4 and IFN-γ is present in the intraepithelial lymphocyte compartment of the rat. We hypothesized that defects in the number or function of these cells would be present in rats susceptible to autoimmunity. We report that the number of NKR-P1A+CD3− intraepithelial NK (IENK) cells is deficient before onset of spontaneous autoimmune diabetes in diabetes-prone BB (BBDP) rats. The absolute number of recoverable IENK cells was only ∼8% of that observed in WF rats. Bone marrow transplantation from histocompatible WF donors reversed the IENK cell deficiency (and prevented diabetes) in these animals, suggesting a hemopoietic origin for their IENK cell defect. Analysis of diabetes-resistant BB rats, which develop autoimmune diabetes only after perturbation of the immune system, revealed IENK cell numbers intermediate between that of BBDP and WF rats. IENK cells were selectively depleted during treatment to induce diabetes. Prediabetic BBDP and diabetes-resistant BB animals also exhibited defective IENK cell function, including decreased NK cell cytotoxicity and reduced secretion of IL-4 and IFN-γ. IENK functional defects were also observed in LEW and BN rats, which are susceptible to induced autoimmunity, but not in WF, DA, or F344 rats, which are resistant. Defects in IENK cell number and function may contribute to the pathogenesis of autoimmune diseases including type 1 diabetes.
CD27 is a costimulatory molecule that provides a complementary target to the PD-1/PD-L1 checkpoint axis on T cells. Combining a CD27 agonist antibody with PD-1/PD-L1 blockade has shown synergistic antitumor activity in preclinical models, which led to clinical studies of the combination in cancer patients. We theorized that coupling CD27 costimulation with PD-1/PD-L1 blockade in a bispecific antibody (BsAb) may provide greater immune activating properties than combining the individual mAbs due to enhanced CD27 activation by cross-linking through PD-L1 and Fc receptors. To test this approach, we developed CDX-527, a tetravalent PD-L1xCD27 IgG1-scFv BsAb. CDX-527 potently inhibits PD-1 signaling and induces CD27-mediated T cell costimulation through PD-L1 cross-linking. In mixed lymphocyte reaction assays, CDX-527 is more potent than the combination of the parental antibodies, suggesting that cross-linking through both Fc receptors and PD-L1 results in enhanced CD27 agonist activity. CDX-527 was shown to mediate effector function against tumor cells overexpressing either CD27 or PD-L1. In human CD27 transgenic mice, we observed that antigen-specific T cell responses to a vaccine are greatly enhanced with a surrogate PD-L1xCD27 BsAb. Furthermore, the BsAb exhibits greater antitumor activity than the combination of the parental antibodies in a syngeneic lymphoma model. A pilot study of CDX-527 in cynomolgus macaques confirmed a mAb-like pharmacokinetic profile without noted toxicities. These studies demonstrate that CDX-527 effectively combines PD-1 blockade and CD27 costimulation into one molecule that is more potent than combination of the parental antibodies providing the rationale to advance this BsAb toward clinical studies in cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.