Pulmonary drug delivery of controlled release formulations may provide an effective adjunct approach to orally delivered antibiotics for clearing persistent lung infections. Dry powder formulations for this indication should possess characteristics including; effective deposition to infected lung compartments, persistence at the infection site, and steady release of antibiotic. Large porous particles (∼10-15 μm) have demonstrated effective lung deposition and enhanced lung residence as a result of their large diameter and reduced clearance by macrophages in comparison to small microparticles (∼1-5 μm). In this report, Precision Particle Fabrication technology was used to create monodisperse large porous particles of poly(D,L-lactic-co-glycolic acid) (PLGA) utilizing oils as extractable porogens. After extraction, the resulting large porous PLGA particles exhibited a low density and a web-like or hollow interior depending on porogen concentration and type, respectively. Ciprofloxacin nanoparticles (nanoCipro) created by homogenization in dichloromethane, possessed a polymorph with a decreased melting temperature. Encapsulating nanoCipro in large porous PLGA particles resulted in a steady release of ciprofloxacin that was extended for larger particle diameters and for the solid particle morphology in comparison to large porous particles. The encapsulation efficiency of nanoCipro was quite low and factors impacting the entrapment of nanoparticles during particle formation were elucidated. A dry powder formulation with the potential to control particle deposition and sustain release to the lung was developed and insight to improve nanoparticle encapsulation is discussed.
Purpose
Nanoparticle technology represents an attractive approach for formulating poorly water soluble pulmonary medicines. Unfortunately, nanoparticle suspensions used in nebulizers or metered dose inhalers often suffer from physical instability in the form of uncontrolled agglomeration or Ostwald ripening. In addition, processing such suspensions into dry powders can yield broad particle size distributions. To address these encumbrances, a controlled nanoparticle flocculation process has been developed.
Method
Nanosuspensions of the poorly water soluble drug budesonide were prepared by dissolving the drug in organic solvent containing surfactants followed by rapid solvent extraction in water. Different surfactants were employed to control the size and surface charge of the precipitated nanoparticles. Nanosuspensions were flocculated using leucine and lyophilized.
Results
Selected budesonide nanoparticle suspensions exhibited an average particle size ranging from ~160–230 nm, high yield and high drug content. Flocculated nanosuspensions produced micron-sized agglomerates. Freeze-drying the nanoparticle agglomerates yielded dry powders with desirable aerodynamic properties for inhalation therapy. In addition, the dissolution rates of dried nanoparticle agglomerate formulations were significantly faster than that of stock budesonide.
Conclusion
The results of this study suggest that nanoparticle agglomerates possess the microstructure desired for lung deposition and the nanostructure to facilitate rapid dissolution of poorly water soluble drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.