Histone methylation has important roles in regulating gene expression and forms part of the epigenetic memory system that regulates cell fate and identity. Enzymes that directly remove methyl marks from histones have recently been identified, revealing a new level of plasticity within this epigenetic modification system. Here we analyse the evolutionary relationship between Jumonji C (JmjC)-domain-containing proteins and discuss their cellular functions in relation to their potential enzymatic activities.
Recent studies indicate that the methylation state of histones can be dynamically regulated by histone methyltransferases and demethylases1,2. The H3K9-specific demethylase Jhdm2a (also known as Jmjd1a and Kdm3a) has an important role in nuclear hormone receptor-mediated gene activation and male germ cell development3,4. Through disruption of the Jhdm2a gene in mice, here we demonstrate that Jhdm2a is critically important in regulating the expression of metabolic genes. The loss of Jhdm2a function results in obesity and hyperlipidemia in mice. We provide evidence that the loss of Jhdm2a function disrupts β-adrenergic-stimulated glycerol release and oxygen consumption in brown fat, and decreases fat oxidation and glycerol release in skeletal muscles. We show that Jhdm2a expression is induced by β-adrenergic stimulation, and that Jhdm2a directly regulates peroxisome proliferator-activated receptor α (Ppara) and Ucp1 expression. Furthermore, we demonstrate that β-adrenergic activation-induced binding of Jhdm2a to the PPAR responsive element (PPRE) of the Ucp1 gene not only decreases levels of H3K9me2 (dimethylation of lysine 9 of histone H3) at the PPRE, but also facilitates the recruitment of Pparγ and Rxrα and their co-activators Pgc1aα(also known as Ppargc1a), CBP/ p300 (Crebbp) and Src1 (Ncoa1) to the PPRE. Our studies thus demonstrate an essential role for Jhdm2a in regulating metabolic gene expression and normal weight control in mice.
The Ink4a/Arf/Ink4b locus plays a critical role in both cellular senescence and tumorigenesis. Jhdm1b/Kdm2b/Fbxl10, the mammalian paralogue of the histone demethylase Jhdm1a/Kdm2a/Fbxl11, has been implicated in cell cycle regulation and tumorigenesis. In this report, we demonstrate that Jhdm1b is an H3K36 demethylase. Knockdown of Jhdm1b in primary MEFs inhibits cell proliferation and induces cellular senescence in a pRb and p53 pathway-dependent manner. Importantly, the effect of Jhdm1b on cell proliferation and cellular senescence is mediated through de-repression of p15Ink4b as loss of p15Ink4b function rescues cell proliferation defects in Jhdm1b knockdown cells. Chromatin immunoprecipitation on ectopically expressed Jhdm1b demonstrates that Jhdm1b targets the p15Ink4b locus and regulates its expression in an enzymatic activity-dependent manner. Alteration of Jhdm1b level affects Ras-induced neoplastic transformation. Collectively, our results indicate that Jhdm1b is an H3K36 demethylase that regulates cell proliferation and senescence through p15Ink4b.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.