In 1993, Malawi became the first African country to replace chloroquine with sulfadoxine-pyrimethamine nationwide in response to high rates of chloroquine-resistant falciparum malaria. To determine whether withdrawal of chloroquine can lead to the reemergence of chloroquine sensitivity, the prevalence of the pfcrt 76T molecular marker for chloroquine-resistant Plasmodium falciparum malaria was retrospectively measured in Blantyre, Malawi. The prevalence of the chloroquine-resistant pfcrt genotype decreased from 85% in 1992 to 13% in 2000. In 2001, chloroquine cleared 100% of 63 asymptomatic P. falciparum infections, no isolates were resistant to chloroquine in vitro, and no infections with the chloroquine-resistant pfcrt genotype were detected. A concerted national effort to withdraw chloroquine from use has been followed by a return of chloroquine-sensitive falciparum malaria in Malawi. The reintroduction of chloroquine, ideally in combination with another antimalarial drug, should be considered in areas where chloroquine resistance has declined and safe and affordable alternatives remain unavailable.
BackgroundAnimal embryotoxicity data, and the scarcity of safety data in human pregnancies, have prevented artemisinin derivatives from being recommended for malaria treatment in the first trimester except in lifesaving circumstances. We conducted a meta-analysis of prospective observational studies comparing the risk of miscarriage, stillbirth, and major congenital anomaly (primary outcomes) among first-trimester pregnancies treated with artemisinin derivatives versus quinine or no antimalarial treatment.Methods and findingsElectronic databases including Medline, Embase, and Malaria in Pregnancy Library were searched, and investigators contacted. Five studies involving 30,618 pregnancies were included; four from sub-Saharan Africa (n = 6,666 pregnancies, six sites) and one from Thailand (n = 23,952). Antimalarial exposures were ascertained by self-report or active detection and confirmed by prescriptions, clinic cards, and outpatient registers. Cox proportional hazards models, accounting for time under observation and gestational age at enrollment, were used to calculate hazard ratios. Individual participant data (IPD) meta-analysis was used to combine the African studies, and the results were then combined with those from Thailand using aggregated data meta-analysis with a random effects model.There was no difference in the risk of miscarriage associated with the use of artemisinins anytime during the first trimester (n = 37/671) compared with quinine (n = 96/945; adjusted hazard ratio [aHR] = 0.73 [95% CI 0.44, 1.21], I2 = 0%, p = 0.228), in the risk of stillbirth (artemisinins, n = 10/654; quinine, n = 11/615; aHR = 0.29 [95% CI 0.08–1.02], p = 0.053), or in the risk of miscarriage and stillbirth combined (pregnancy loss) (aHR = 0.58 [95% CI 0.36–1.02], p = 0.099). The corresponding risks of miscarriage, stillbirth, and pregnancy loss in a sensitivity analysis restricted to artemisinin exposures during the embryo sensitive period (6–12 wk gestation) were as follows: aHR = 1.04 (95% CI 0.54–2.01), I2 = 0%, p = 0.910; aHR = 0.73 (95% CI 0.26–2.06), p = 0.551; and aHR = 0.98 (95% CI 0.52–2.04), p = 0.603. The prevalence of major congenital anomalies was similar for first-trimester artemisinin (1.5% [95% CI 0.6%–3.5%]) and quinine exposures (1.2% [95% CI 0.6%–2.4%]). Key limitations of the study include the inability to control for confounding by indication in the African studies, the paucity of data on potential confounders, the limited statistical power to detect differences in congenital anomalies, and the lack of assessment of cardiovascular defects in newborns.ConclusionsCompared to quinine, artemisinin treatment in the first trimester was not associated with an increased risk of miscarriage or stillbirth. While the data are limited, they indicate no difference in the prevalence of major congenital anomalies between treatment groups. The benefits of 3-d artemisinin combination therapy regimens to treat malaria in early pregnancy are likely to outweigh the adverse outcomes of partially treated malaria, which ...
BackgroundSafety data regarding exposure to artemisinin-based combination therapy in pregnancy are limited. This prospective cohort study conducted in Zambia evaluated the safety of artemether-lumefantrine (AL) in pregnant women with malaria.MethodsPregnant women attending antenatal clinics were assigned to groups based on the drug used to treat their most recent malaria episode (AL vs. sulphadoxine-pyrimethamine, SP). Safety was assessed using standard and pregnancy-specific parameters. Post-delivery follow-up was six weeks for mothers and 12 months for live births. Primary outcome was perinatal mortality (stillbirth or neonatal death within seven days after birth).ResultsData from 1,001 pregnant women (AL n = 495; SP n = 506) and 933 newborns (AL n = 466; SP n = 467) showed: perinatal mortality (AL 4.2%; SP 5.0%), comprised of early neonatal mortality (each group 2.3%), stillbirths (AL 1.9%; SP 2.7%); preterm deliveries (AL 14.1%; SP 17.4% of foetuses); and gestational age-adjusted low birth weight (AL 9.0%; SP 7.7%). Infant birth defect incidence was 1.8% AL and 1.6% SP, excluding umbilical hernia. Abortions prior to antenatal care could not be determined: abortion occurred in 4.5% of women treated with AL during their first trimester; none were reported in the 133 women exposed to SP and/or quinine during their first trimester. Overall development (including neurological assessment) was similar in both groups.ConclusionsThese data suggest that exposure to AL in pregnancy, including first trimester, is not associated with particular safety risks in terms of perinatal mortality, malformations, or developmental impairment. However, more data are required on AL use during the first trimester.
IntroductionCotrimoxazole (CTX) has been used for half a century. It is inexpensive hence the reason for its almost universal availability and wide clinical spectrum of use. In the last decade, CTX was used for prophylaxis of opportunistic infections in HIV infected people. It also had an impact on the malaria risk in this specific group.ObjectiveWe performed a systematic review to explore the efficacy and safety of CTX used for P.falciparum malaria treatment and prophylaxis.ResultCTX is safe and efficacious against malaria. Up to 75% of the safety concerns relate to skin reactions and this increases in HIV/AIDs patients. In different study areas, in HIV negative individuals, CTX used as malaria treatment cleared 56%–97% of the malaria infections, reduced fever and improved anaemia. CTX prophylaxis reduces the incidence of clinical malaria in HIV-1 infected individuals from 46%–97%. In HIV negative non pregnant participants, CTX prophylaxis had 39.5%–99.5% protective efficacy against clinical malaria. The lowest figures were observed in zones of high sulfadoxine-pyrimethamine resistance. There were no data reported on CTX prophylaxis in HIV negative pregnant women.ConclusionCTX is safe and still efficacious for the treatment of P.falciparum malaria in non-pregnant adults and children irrespective of HIV status and antifolate resistance profiles. There is need to explore its effect in pregnant women, irrespective of HIV status. CTX prophylaxis in HIV infected individuals protects against malaria and CTX may have a role for malaria prophylaxis in specific HIV negative target groups.
BackgroundIn Zambia, there has been a large scaling up of interventions to control malaria in recent years including the deployment of rapid diagnostic tests (RDTs) to improve malaria surveillance data as well as guide malaria treatment in health facilities. The practical challenge is the impact of RDT results on subsequent management of patients. This study explored the role of RDTs in malaria diagnosis and the health workers’ adherence to test results.MethodsAn observational prospective study was carried out at health centres in four districts, namely Chibombo, Chingola, Chipata, and Choma. Children under the age of five years with history of fever were recruited and the clinicians’ use of RDT results was observed to establish whether prescriptions were issued prior to the availability of parasitological results or after, and whether RDT results influenced their prescriptions.ResultsOf the 2, 393 recruited children, 2, 264 had both RDT and microscopic results. Two in three (68.6%) children were treated with anti-malarials despite negative RDT results and almost half (46.2%) of these were prescribed Coartem®. Only 465 (19.4%) of the 2,393 children were prescribed drugs before receiving laboratory results. A total of 76.5% children were prescribed drugs after laboratory results. Children with RDT positive results were 2.66 (95% CI (2.00, 3.55)) times more likely to be prescribed anti-malarial drugs. Children who presented with fever at admission (although history of fever or presence of fever at admission was an entry criterion) were 42% less likely to be prescribed an anti-malarial drug compared to children who had no fever (AOR = 0.58; 95% CI (0.52, 0.65)). It was noted that proportions of children who were RDT- and microscopy-positive significantly declined over the years from 2005 to 2008.ConclusionsRDTs may contribute to treatment of febrile illness by confirming malaria cases from non-malaria cases in children under the age of five. However, the adherence of the health workers to prescribing anti-malarials to only RDT-positive cases at health facility level will still require to be explored further as their role is crucial in more precise reporting of malaria cases in this era towards malaria elimination as the target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.