Microneedle patches contain micron-scale needles coated with bioactive agents for minimally invasive drug delivery to the skin. In this study, we introduce layer-by-layer approaches to the fabrication of ultrathin DNA- and protein-containing polyelectrolyte films (or ‘polyelectrolyte multilayers’, PEMs) on the surfaces of stainless steel microneedles. DNA-containing PEMs were fabricated on microneedles by the alternating deposition of plasmid DNA and a hydrolytically degradable poly(β-amino ester). Protein-containing PEMs were fabricated using sodium poly(styrene sulfonate) (SPS) and bovine pancreatic ribonuclease A (RNase A) conjugated to a synthetic protein transduction domain. Layer-by-layer assembly resulted in ultrathin, uniform, and defect-free coatings on the surfaces of the microneedles, as characterized by fluorescence microscopy. These films eroded and thereby released DNA or protein when incubated in saline or when inserted into porcine cadaver skin, and deposited DNA or protein along the edges of microneedle tracks to depths of ~500 to 600μm. We conclude that PEM-coated microneedles offer a novel and useful approach to the transdermal delivery of DNA- and protein-based therapeutics and could also prove useful in other applications.
We report an approach for the localized delivery of plasmid DNA to vascular tissue from the surfaces of inflatable embolectomy catheter balloons. Using a layer-by-layer approach, ultrathin multilayered polyelectrolyte films were fabricated on embolectomy catheter balloons by alternately adsorbing layers of a hydrolytically degradable poly(β-amino ester) and plasmid DNA. Fluorescence microscopy revealed that the films coated the surfaces of the balloons uniformly. Coated balloons that were incubated in phosphate-buffered saline at 37 °C released ~25 μg DNA/ cm 2 over 24 hours. Analysis of the DNA by gel electrophoresis showed that the DNA was released in open-circular ('nicked') and supercoiled conformations, and in vitro cell transfection assays confirmed that the released DNA was transcriptionally active. Arterial injury was induced in the internal carotid arteries of Sprague-Dawley rats using uncoated balloons, followed by treatment with film-coated balloons for 20 minutes. X-gal, immunohistochemical, and immunofluorescence staining of sectioned arteries indicated high levels of β-galactosidase or enhanced green fluorescent protein (EGFP) expression in arteries treated with film-coated balloons. β-galactosidase and EGFP expression were observed throughout the medial layers of arterial tissue, and around approximately two-thirds of the circumference of the treated arteries. The layer-by-layer approach reported here provides a general platform for the balloon-mediated delivery of DNA to vascular tissue. Our results suggest the potential of this approach to deliver therapeutically relevant DNA to prevent complications such as intimal hyperplasia that arise after vascular interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.