Semifluorinated polymer surfactants, composed of a monomethyl poly(ethylene glycol) (mPEG) hydrophilic head group and either 1, 2, or 3 perfluoro-tert-butyl (PFtB) groups as the fluorophilic tail, were synthesized, and their aqueous self-assemblies were investigated as a potential design for theranostic nanoparticles. Polymers with three PFtB groups (PFtBTRI) solely formed stable, spherical micelles, approximately 12 nm in size. These PFtBTRI surfactants demonstrate similar characteristics with those of polymers with linear perfluorocarbon tails, despite large differences in tail structure. For example, PFtB polymer solutions stably emulsified 20 v/v% sevoflurane with perfluorooctyl bromide (PFOB) as a stabilizer. However, these PFtB polymers have the additional potential to serve as F-MRI contrast agents. PFtBTRI micelles gave one narrow 19F-NMR signal in D2O, with T1 and T2 parameters of approximately 500 and 100 ms, respectively. 19F-MR images of PFtB polymer solutions at 1 mM gave intense signal at 4.7 T without sensitizers or selective excitation sequences. These preliminary data demonstrate the potential of PFtB polymers as a basic design, which can be further modified to serve as dual drug-delivery and imaging vehicles.
Methylmercury data from walleye fillets collected by multiple agencies from northern Wisconsin lakes from 1982 to 2005 were examined for regional time trends. Hierarchical Bayesian methods were used to model dependencies and provide probability statements for parameters pertaining to individual lakes and the region as a whole. A missing data mechanism allowed the sex of the fish to be included as a predictor since the sexes grow at different rates. A slight regional decrease in methylmercury of 0.60% annually was found, consistent with declining atmospheric mercury deposition. Methylmercury was estimated to have decreased in 77% of the 420 lakes from which walleye were sampled, although uncertainty regarding time trends was greater for most individual lakes than for the region as a whole. Methylmercury in walleye varied widely from lake to lake, but generally accumulated in the fish at similar rates by length after accounting for differences in sex. Slower-growing male walleye had higher methylmercury concentrations than females for a given length, and skin-on fillets were 16% lower in methylmercury than skin-off fillets.
Bone plays critical roles in support, protection, movement, and metabolism. Although bone has an innate capacity for regeneration, this capacity is limited, and many bone injuries and diseases require intervention. Biomaterials are a critical component of many treatments to restore bone function and include non-resorbable implants to augment bone and resorbable materials to guide regeneration. Biomaterials can vary considerably in their biocompatibility and bioactivity, which are functions of specific material parameters. The success of biomaterials in bone augmentation and regeneration is based on their effects on the function of bone cells. Such functions include adhesion, migration, inflammation, proliferation, communication, differentiation, resorption, and vascularization. This review will focus on how different material parameters can enhance bone cell function both in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.