The retina contains two distinct populations of monocyte-derived cells: perivascular cells (macrophages) and parenchymal cells (microglia), important in homeostasis, neuroinflammation, degeneration, and injury. The turnover of these cells in the retina and their repopulation in normal physiological conditions have not been clarified. Bone marrow (BM) cells from EGFP-transgenic mice were adoptively transferred into lethally irradiated normal adult C57BL/6 mice. Eight, 14, and 26 weeks later mice were sacrificed and retinal flatmounts were prepared. Retinal microglia were identified by F4/80, CD45, and Iba-1 immunostaining. BrdU was injected into normal mice for 3-14 days and cell proliferation was examined by confocal microscopy of retinal flatmounts. Few (6.15 +/- 2.02 cells/retina) BrdU(+) cells were detected and of these some coexpressed CD11b (1.67 +/- 0.62 cells/retina) or F4/80 (0.57 +/- 0.30 cells/retina). BM-derived EGFP(+) cells were detected by 8-weeks post-transplantation. By 6 months, all retinal myeloid cells were EGFP(+). Consecutively, donor BM-EGFP(+) cells were demonstrated within the: (1) peripheral and juxtapapillary retina, (2) ganglion cell layer, (3) inner and outer plexiform layers, and (4) photoreceptor layer. EGFP(+) cells within the ganglion layer were amoeboid in shape and F4/80(high)CD45(high)Iba-1(high), whereas cells in the inner and outer plexiform layers were ramified and F4/80(low) CD45(low)Iba-1(low). Perivascular macrophages expressed less F4/80, CD45, and Iba-1 compared with parenchymal microglia. Our results suggest that BM-derived monocyte precursor cells are able to migrate across the BRB and replace retinal microglia/macrophages. The complete replacement of retinal microglia/macrophages takes about 6 months. In situ proliferation was predominantly of nonhemopoetic retinal cells.
Aim: To study the incidence of endophthalmitis following cataract surgery over a 10 year period, and to examine ways in which this may be related to changes in surgical technique. Methods: All cases of endophthalmitis occurring over a 10 year period within a single ophthalmic unit in the United Kingdom were reviewed, and possible risk factors identified. Results: During the study period, as the technique of extracapsular cataract surgery was replaced by phacoemulsification, there was a commensurate reduction in the incidence of endophthalmitis. Injectable IOLs were associated with the lowest risk of postoperative endophthalmitis (0.028%). Conclusions: Injectable intraocular lenses do not make contact with the ocular surface and this may result in the observed lower rate of endophthalmitis. This, and the ease with which they can be inserted through small incisions, support their use as the first line method of lens insertion.
Background: Given the presence of neural progenitor cells (NPC) in the retina of other species capable of differentiating into multiple neural components, the authors report the presence of NPC in the adult human retina. A resident population of NPC suggests that the retina may constitutively replace neurons, photoreceptors, and glia. Methods: Adult human postmortem retinal explants and cell suspensions were used to generate cells in tissue culture that display the features of NPC. The phenotype of cells and differentiation into neurons was determined by immunocytochemistry. Dividing cells were labelled with 5-bromo-2-deoxyuridine (BrdU) and neurospheres were generated and passaged. Results: Cells labelled with nestin, neurofilament M (NFM), rhodopsin, or glial fibrillary acidic protein (GFAP) grew out from explant cultures. BrdU labelling of these cells occurred only with basic fibroblast growth factor (FGF-2). Dissociated retina and pars plana generated primary neurospheres. From primary neurospheres, NPC were passaged to generate secondary neurospheres, neurons, photoreceptors, and glia. BrdU labelling identified dividing cells from neurospheres that differentiated to express NFM and rhodopsin. Conclusion: The adult human retina contains NPC and may have the potential to replace neurons and photoreceptors. This has implications for the pathogenesis and treatment of retinal disorders and degenerations, including glaucoma, and those disorders associated with retinal scarring.
Background/aim: Nestin is an intermediate filament marker for neural progenitor cells. The authors aimed to identify nestin positive cells in adult human retina and within surgically removed epiretinal membranes. Methods: Adult human retina and epiretinal membranes were studied. Tissue was fixed and processed for semithin sections or whole mount preparations for immunohistochemical detection of nestin and glial fibrillary acidic protein (GFAP) expression. Results: Nestin positive cells are most prominent at the ora serrata, possess fibrillary processes, small amounts of perinuclear cytoplasm, and are arranged radially within or superficially on the retina. In the posterior retina, speckled cytoplasmic nestin staining is seen around the nuclei of neurons. In the peripapillary retina most of the cells in the retinal ganglion cell layer are nestin positive. These cells appear to represent nestin positive neurons. Speckled cells are also seen in the myelinated portion of the optic nerve. In epiretinal membranes patches of elongated nestin positive cells were found. These cells were also positive for GFAP. Conclusions: Some neurons and glia in the adult human retina are nestin positive. Their pattern in anterior retina suggests an analogy with the ciliary marginal zone found in many other species. The role of these cells in pathological responses to retinal disease is suggested by the presence of large numbers of ectopic nestin positive cells in epiretinal membranes. The authors hypothesise that nestin positive cells represent a population of progenitor cells from normal adult human retina that differentiate to make up retinal scar tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.