Galectin-3 (Gal-3) is a member of the beta-galactoside-binding lectin family and plays an important role in inflammation. However, the precise role of Gal-3 in autoimmune diseases remains obscure. We have investigated the functional role of Gal-3 in experimental autoimmune encephalomyelitis (EAE) following immunization with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide. Gal-3 deficient (Gal-3-/-) mice developed significantly milder EAE and markedly reduced leukocyte infiltration in the CNS compared with similarly treated wild-type (WT) mice. Gal-3-/- mice also contained fewer monocytes and macrophages but more apoptotic cells in the CNS than did WT mice. Following Ag stimulation in vitro, lymph node cells from the immunized Gal-3-/- mice produced less IL-17 and IFN-gamma than did those of the WT mice. In contrast, Gal-3-/- mice produced more serum IL-10, IL-5, and IL-13 and contained higher frequency of Foxp3+ regulatory T cells in the CNS than did the WT mice. Furthermore, bone marrow-derived dendritic cells from Gal-3-/- mice produced more IL-10 in response to LPS or bacterial lipoprotein than did WT marrow-derived dendritic cells. Moreover, Gal-3-/- dendritic cells induced Ag-specific T cells to produce more IL-10, IL-5, and IL-12, but less IL-17, than did WT dendritic cells. Taken together, our data demonstrate that Gal-3 plays an important disease-exacerbating role in EAE through its multifunctional roles in preventing cell apoptosis and increasing IL-17 and IFN-gamma synthesis, but decreasing IL-10 production.
This study describes the gross anatomy of the alimentary tract of Houbara Bustards (Chlamydotis undulata macqueenii), Kori Bustards (Ardeotis kori), Rufous-crested Bustards (Eupodotis ruficrista) and White-bellied Bustards (Eupodotis senegalensis) maintained in captivity by the National Avian Research Center in the United Arab Emirates. The morphology of the alimentary tract and the proportions of each region were similar in all 4 species. The length of the oesophagus, combined proventriculus and ventriculus, small intestine, and large intestine formed 24n2-28n4%, 7n3-9n7%, 40n5-55n1 % and 9n1-14n7 % of the total alimentary tract length respectively. Neither crop nor oesophageal enlargement was observed in the birds examined in this study, although male Kori Bustards possessed a saccus oralis in the oropharyngeal cavity. Oesophagi, proventriculi, ventriculi, caeca and large intestine were well developed in all species. The small intestine was shorter than that of other avian herbivores and granivores when compared on a bodyweight basis. The well differentiated stomachs and well developed caeca of the bustards examined in this study are characteristic of omnivores. Analysis of the mean lengths of the alimentary tract components and weight of the liver and pancreas showed sexual dimorphism in cases where male and female data were available for direct comparison.
IL-23, a proximal regulator of IL-17, may be a major driving force in the induction of autoimmune inflammation. We have used a model of subdiabetogenic treatment with multiple low doses of streptozotocin (MLD-STZ; 4 Â 40 mg/kg body weight) in male C57BL/6 mice to study the effect of IL-23 on immune-mediated b cell damage and the development of diabetes, as evaluated by blood glucose, quantitative histology, immunohistochemistry and expression of relevant cytokines in the islets. Ten daily injections of 400 ng IL-23, starting on the first day of MLD-STZ administration led to significant and sustained hyperglycemia along with weight loss compared with controls (no IL-23), and a significant increase in the number of infiltrating cells, a lower insulin content, enhanced apoptosis, expression of IFN-c and IL-17 (not seen in the controls) and a significant increase in the expression of TNF-a and IL-18 in the pancreatic islets. IL-23 treatment started 5 days prior to MLD-STZ administration had no effect on diabetogenesis or cytokines expression in the pancreatic islets. We provide the first evidence in an animal model that IL-23 is involved in the development of type-1 diabetes, by inducing IL-17 and possibly IFN-c production in the target tissue.
Diabetes mellitus (DM) is a chronic condition characterised by β cell dysfunction and persistent hyperglycaemia. The disorder can be due to the absence of adequate pancreatic insulin production or a weak cellular response to insulin signalling. Among the three types of DM, namely, type 1 DM (T1DM), type 2 DM (T2DM), and gestational DM (GDM); T2DM accounts for almost 90% of diabetes cases worldwide. Epigenetic traits are stably heritable phenotypes that result from certain changes that affect gene function without altering the gene sequence. While epigenetic traits are considered reversible modifications, they can be inherited mitotically and meiotically. In addition, epigenetic traits can randomly arise in response to environmental factors or certain genetic mutations or lesions, such as those affecting the enzymes that catalyse the epigenetic modification. In this review, we focus on the role of DNA methylation, a type of epigenetic modification, in the pathogenesis of T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.