A series of nanoporous membranes prepared from polyethylene-block-polystyrene were applied for size-selective diffusion of glucose and albumin molecules. Millimeter-sized test cells for characterization of such molecular diffusions were designed assuming an implantable glucose sensor. The prepared nanoporous membrane exhibits excellent flexibility and toughness compared to conventional nanoporous membranes of brittle alumina. Pore size of the membranes could be controlled from 5 to 30 nm by varying preparation conditions. All of these nanoporous membranes prepared in this study let glucose pass through, indicating a continuous pore connection through the entire thickness of the membrane in a few tens of micrometers. In contrast, membranes prepared under optimum conditions could perfectly block albumin permeation. This means that these vital molecules having different sizes can be selectively diffused through the nanoporous membranes. Such a successful combination of size selectivity of molecular diffusion in nanoscale and superior mechanical properties in macroscale is also beneficial for other devices requesting down-sized manufacture.
Abstract-This letter describes a data telemetry biomedical experiment. An implant, consisting of a biometric data sensor, electronics, an antenna and a biocompatible capsule is described. All the elements were co-designed, in order to maximize the transmission distance. The device was implanted in a pig for an in vivo experiment of temperature monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.