The rise of multi-drug-resistant (MDR) bacteria has spurred renewed interest in the use of bacteriophages in therapy. However, mechanisms contributing to phage-mediated bacterial clearance in an animal host remain unclear. We investigated the effects of host immunity on the efficacy of phage therapy for acute pneumonia caused by MDR Pseudomonas aeruginosa in a mouse model. Comparing efficacies of phage-curative and prophylactic treatments in healthy immunocompetent, MyD88-deficient, lymphocyte-deficient, and neutrophil-depleted murine hosts revealed that neutrophil-phage synergy is essential for the resolution of pneumonia. Population modeling of in vivo results further showed that neutrophils are required to control both phage-sensitive and emergent phage-resistant variants to clear infection. This "immunophage synergy" contrasts with the paradigm that phage therapy success is largely due to bacterial permissiveness to phage killing. Lastly, therapeutic phages were not cleared by pulmonary immune effector cells and were immunologically well tolerated by lung tissues.
Antibiotic-resistant bacteria threaten life worldwide. Although new antibiotics are scarce, the use of bacteriophages, viruses that infect bacteria, is rarely proposed as a means of offsetting this shortage. Doubt also remains widespread about the efficacy of phage therapy despite recent encouraging results. Using a bioluminescent Pseudomonas aeruginosa strain, we monitored and quantified the efficacy of a bacteriophage treatment in mice during acute lung infection. Bacteriophage treatment not only was effective in saving animals from lethal infection, but also was able to prevent lung infection when given 24 h before bacterial infection, thereby extending the potential use of bacteriophages as therapeutic agents to combat bacterial lung infection.
Multidrug-resistant bacteria are the cause of an increasing number of deadly
pulmonary infections. Because there is currently a paucity of novel antibiotics,
phage therapy—the use of specific viruses that infect bacteria—is
now more frequently being considered as a potential treatment for bacterial
infections. Using a mouse lung-infection model caused by a multidrug resistant
Pseudomonas aeruginosa mucoid strain isolated from a cystic
fibrosis patient, we evaluated bacteriophage treatments. New bacteriophages were
isolated from environmental samples and characterized. Bacteria and
bacteriophages were applied intranasally to the immunocompetent mice. Survival
was monitored and bronchoalveolar fluids were analysed. Quantification of
bacteria, bacteriophages, pro-inflammatory and cytotoxicity markers, as well as
histology and immunohistochemistry analyses were performed. A curative treatment
(one single dose) administrated 2 h after the onset of the infection allowed
over 95% survival. A four-day preventive treatment (one single dose)
resulted in a 100% survival. All of the parameters measured correlated
with the efficacy of both curative and preventive bacteriophage treatments. We
also showed that in vitro optimization of a bacteriophage
towards a clinical strain improved both its efficacy on in vivo
treatments and its host range on a panel of 20 P. aeruginosa
cystic fibrosis strains. This work provides an incentive to develop clinical
studies on pulmonary bacteriophage therapy to combat multidrug-resistant lung
infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.