Given an arbitrary quantum state (σ), we obtain an explicit construction of a state ρ * ε (σ) (resp. ρ * ,ε (σ)) which has the maximum (resp. minimum) entropy among all states which lie in a specified neighbourhood (ε-ball) of σ. Computing the entropy of these states leads to a local strengthening of the continuity bound of the von Neumann entropy, i.e., the Audenaert-Fannes inequality. Our bound is local in the sense that it depends on the spectrum of σ. The states ρ * ε (σ) and ρ * ,ε (σ) depend only on the geometry of the ε-ball and are in fact optimizers for a larger class of entropies. These include the Rényi entropy and the min-and max-entropies, providing explicit formulas for certain smoothed quantities. This allows us to obtain local continuity bounds for these quantities as well. In obtaining this bound, we first derive a more general result which may be of independent interest, namely a necessary and sufficient condition under which a state maximizes a concave and Gâteaux-differentiable function in an ε-ball around a given state σ. Examples of such a function include the von Neumann entropy, and the conditional entropy of bipartite states. Our proofs employ tools from the theory of convex optimization under non-differentiable constraints, in particular Fermat's Rule, and majorization theory. *
We study Landauer's Principle for Repeated Interaction Systems (RIS) consisting of a reference quantum system S in contact with a structured environment E made of a chain of independent quantum probes; S interacts with each probe, for a fixed duration, in sequence. We first adapt Landauer's lower bound, which relates the energy variation of the environment E to a decrease of entropy of the system S during the evolution, to the peculiar discrete time dynamics of RIS. Then we consider RIS with a structured environment E displaying small variations of order T −1 between the successive probes encountered by S, after n ≃ T interactions, in keeping with adiabatic scaling. We establish a discrete time non-unitary adiabatic theorem to approximate the reduced dynamics of S in this regime, in order to tackle the adiabatic limit of Landauer's bound. We find that saturation of Landauer's bound is related to a detailed balance condition on the repeated interaction system, reflecting the non-equilibrium nature of the repeated interaction system dynamics. This is to be contrasted with the generic saturation of Landauer's bound known to hold for continuous time evolution of an open quantum system interacting with a single thermal reservoir in the adiabatic regime.
We investigate entanglement breaking times of Markovian evolutions in discrete and continuous time. In continuous time, we characterize which Markovian evolutions are eventually entanglement breaking, that is, evolutions for which there is a finite time after which any entanglement initially present has been destroyed by the noisy evolution. In the discrete-time framework, we consider the entanglement breaking index, that is, the number of times a quantum channel has to be composed with itself before it becomes entanglement breaking. The PPT 2 conjecture is that every PPT quantum channel has an entanglement breaking index of at most 2; we prove that every faithful PPT quantum channel has a finite entanglement breaking index, and more generally, any faithful PPT CP map whose Hilbert-Schmidt adjoint is also faithful is eventually entanglement breaking. We also provide a method to obtain concrete bounds on this index for any faithful quantum channel. To obtain these estimates, we use a notion of robustness of separability to obtain bounds on the radius of the largest separable ball around faithful product states. We also extend the framework of Poincaré inequalities for non-primitive semigroups to the discrete setting to quantify the convergence of quantum semigroups in discrete time, which is of independent interest.
In this paper, we analyze classical data compression with quantum side information (also known as the classical-quantum Slepian-Wolf protocol) in the so-called large and moderate deviation regimes. In the non-asymptotic setting, the protocol involves compressing classical sequences of finite length n and decoding them with the assistance of quantum side information. In the large deviation regime, the compression rate is fixed, and we obtain bounds on the error exponent function, which characterizes the minimal probability of error as a function of the rate. Devetak and Winter showed that the asymptotic data compression limit for this protocol is given by a conditional entropy. For any protocol with a rate below this quantity, the probability of error converges to one asymptotically and its speed of convergence is given by the strong converse exponent function. We obtain finite blocklength bounds on this function, and determine exactly its asymptotic value. In the moderate deviation regime for the compression rate, the latter is no longer considered to be fixed. It is allowed to depend on the blocklength n, but assumed to decay slowly to the asymptotic data compression limit. Starting from a rate above this limit, we determine the speed of convergence of the error probability to zero and show that it is given in terms of the conditional information variance. Our results complement earlier results obtained by Tomamichel and Hayashi, in which they analyzed the so-called small deviation regime of this protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.