SUMMARY Psychological studies in humans and behavioral studies of model organisms suggest that forgetting is a common and biologically regulated process, but the molecular, cellular, and circuit mechanisms underlying forgetting are poorly understood. Here we show that the bidirectional modulation of a small subset of dopamine neurons (DANs) after olfactory learning regulates the rate of forgetting of both punishing (aversive) and rewarding (appetitive) memories. Two of these DANs, MP1 and MV1, exhibit synchronized ongoing activity in the mushroom body neuropil in alive and awake flies before and after learning, as revealed by functional cellular imaging. Furthermore, while the mushroom-body-expressed dDA1 dopamine receptor is essential for the acquisition of memory, we show that the dopamine receptor DAMB, also highly expressed in mushroom body neurons, is required for forgetting. We propose a dual role for dopamine: memory acquisition through dDA1 signaling and forgetting through DAMB signaling in the mushroom body neurons.
Genetic screens in Drosophila melanogaster and other organisms have been pursued to filter the genome for genetic functions important for memory formation. Such screens have employed primarily chemical or transposon-mediated mutagenesis and have identified numerous mutants including classical memory mutants, dunce and rutabaga. Here, we report the results of a large screen using panneuronal RNAi expression to identify additional genes critical for memory formation. We identified .500 genes that compromise memory when inhibited (low hits), either by disrupting the development and normal function of the adult animal or by participating in the neurophysiological mechanisms underlying memory formation. We also identified .40 genes that enhance memory when inhibited (high hits). The dunce gene was identified as one of the low hits and further experiments were performed to map the effects of the dunce RNAi to the a/b and g mushroom body neurons. Additional behavioral experiments suggest that dunce knockdown in the mushroom body neurons impairs memory without significantly affecting acquisition. We also characterized one high hit, sickie, to show that RNAi knockdown of this gene enhances memory through effects in dopaminergic neurons without apparent effects on acquisition. These studies further our understanding of two genes involved in memory formation, provide a valuable list of genes that impair memory that may be important for understanding the neurophysiology of memory or neurodevelopmental disorders, and offer a new resource of memory suppressor genes that will aid in understanding restraint mechanisms employed by the brain to optimize resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.