It has been argued that exposure to inescapable shock produces later behavioral changes such as poor shuttle box escape learning because it leads to the conditioning of intense fear, which later transfers to the shuttle box test situation and interferes with escape. Both fear, as assessed by freezing, and escape were measured in Sprague-Dawley rats 24 hr after exposure to inescapable shock. Lesions of the basolateral region and central nucleus of the amygdala eliminated the fear that transfers to the shuttle box after inescapable shock, as well as the fear conditioned in the shuttle box by the shuttle box shocks. However, the amygdala lesions did not reduce the escape learning deficit produced by inescapable shock. In contrast, dorsal raphe nucleus lesions did not reduce the fear that transfers to the shuttle box after inescapable shock, but eliminated the enhanced fear conditioning in the shuttle box as well as the escape deficit. The implications of these results for the role of fear and anxiety in mediating inescapable shock effects are discussed.
In Experiment 1, 2 groups of human subjects were trained to respond to 1 of 2 light intensity stimuli, S2 or S4, and then were tested for generalization with a randomized series of increasing values from S1 to S11. Both groups, including the group trained to respond to dimmer value, showed peak shifts to a brighter more centrally located test stimulus. In Experiment 2, which used line angle stimuli, both the size of the difference between S+ and S- and the range of test stimuli that extended beyond S+ were varied. The larger the S(+)-S- separation and the larger the range, the greater was the peak shift obtained. In Experiment 3, training involved an S- (line angle) surrounded by 2 S+ values with testing symmetrical about the training values and covering either a narrow or a wide range. The wide range produced greater peak shifts in both directions from S-. All 3 experiments support an adaptation-level interpretation of intradimensional discrimination learning and generalization test performance in human subjects. Related work with animals suggests the presence of similar processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.