This paper describes the design of a battery-assisted Ultra-High Frequency (UHF) Radio-Frequency IDentification (RFID) tag suitable for embedding in concrete materials and its measurement in a mortar slab. The device is built to communicate wirelessly not only the ID number of the RFID chip but also the digitalized output of a strain gauge sensor. Design optimizations of the RFID antenna is based on published permittivity and conductivity values of concrete. Experimental read ranges are measured from 800 to 1000 MHz with the help of commercial test equipment. Reading is possible up to 50 cm from the surface of a mortar block for a tag embedded 5 cm below the surface. This result is the first published one for RFID tags embedded in concrete or mortar.
Estimating the transient magnetic field generated by a direct lightning strike is essential to protect sensitive electronic devices in industrial facilities. The accuracy of the estimation depends on the approach and the representatives of the model. Out of the different alternatives available in the literature, the full-wave methods are usually the most reliable. Nevertheless, there is still uncertainty in the results because considering all the components of the electromagnetic environment in the models is virtually impossible. To validate the representation of reinforced concrete structures in full-wave simulations, in this paper, we compare the magnetic field measured between two interconnected reinforced concrete walls to the magnetic field computed using CST Studio Suite. Similar tendencies for the distribution of the peak-values are observed; yet, some adjustments may be necessary to reproduce the waveforms.
When a building is struck by lightning in an industrial facility, a partial lightning current can flow through the reinforcement of cable ducts, causing interference to the cables routing inside. The distribution of the lightning current among the paths leading away from the building depends on their impedance. In this paper, we present the impedance measured in two different cable ducts: one duct with a wire-tied reinforcement and the other with a welded reinforcement. The measurements are compared to the results of numerical simulations carried out using the FDTD method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.