Activation-induced cytidine deaminase (AID), which is specific to B lymphocytes, is required for class switch recombination (CSR)--a process mediating isotype switching of immunoglobulin--and somatic hypermutation--the introduction of many point mutations into the immunoglobulin variable region genes. It has been suggested that AID may function as an RNA-editing enzyme or as a cytidine deaminase on DNA. However, the precise enzymatic activity of AID has not been assessed in previous studies. Similarly, although transcription of the target immunoglobulin locus sequences is required for both CSR and somatic hypermutation, the precise role of transcription has remained speculative. Here we use two different assays to demonstrate that AID can deaminate specifically cytidines on single-stranded (ss)DNA but not double-stranded (ds)DNA substrates in vitro. However, dsDNA can be deaminated by AID in vitro when the reaction is coupled to transcription. Moreover, a synthetic dsDNA sequence, which targets CSR in vivo in a manner dependent on transcriptional orientation, was deaminated by AID in vitro with the same transcriptional-orientation-dependence as observed for endogenous CSR. We conclude that transcription targets the DNA deamination activity of AID to dsDNA by generating secondary structures that provide ssDNA substrates.
Molecular mechanisms underlying synapsis of activation-induced deaminase (AID)-targeted S regions during class switch recombination (CSR) are poorly understood. By using chromosome conformation capture techniques, we found that in B cells, the Emicro and 3'Ealpha enhancers were in close spatial proximity, forming a unique chromosomal loop configuration. B cell activation led to recruitment of the germline transcript (GLT) promoters to the Emicro:3'Ealpha complex in a cytokine-dependent fashion. This structure facilitated S-S synapsis because Smicro was proximal to Emicro and a downstream S region was corecruited with the targeted GLT promoter to Emicro:3'Ealpha. We propose that GLT promoter association with the Emicro:3'Ealpha complex creates an architectural scaffolding that promotes S-S synapsis during CSR and that these interactions are stabilized by AID. Thus, the S-S synaptosome is formed as a result of the self-organizing transcription system that regulates GLT expression and may serve to guard against spurious chromosomal translocations.
Four transcriptional enhancers lie downstream of the immunoglobulin heavy chain locus: Calpha3'/hs3a, hs1,2, hs3b, and hs4. Although individually weak, these elements have strong transcriptional synergies when combined and they altogether behave as a locus control region. Previous knockout experiments in the 3' region have shown that both hs3a and hs1,2 are dispensable for normal expression and rearrangement of the IgH locus but that their replacement with a transcribed neo gene severely affects class switch recombination. Here we show that even in the absence of a neo gene, joint deletion of the last two 3' enhancers, hs3b and hs4, severely impairs germline transcription and class switching to most isotypes and may in addition affect mu gene expression in resting B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.