Pore size and pore connectivity control diffusionbased transport in mesopores, a crucial property governing the performance of heterogeneous catalysts. In many cases, transitionmetal oxide catalyst materials are prepared from molecular precursors involving hydrothermal treatment followed by heat treatment. Here, we investigate the effects of such a hydrothermal aftertreatment step, using an aqueous ammonia solution, on the disordered mesopore network of Ce x Zr 1−x−y−z Y y La z O 2−δ mixed oxides. This procedure is a common synthesis step in the preparation of such ceria-based oxygen storage materials applied in three-way catalysis, employed to improve the materials' thermal stability. We perform state-of-the-art Arphysisorption analysis, especially advanced hysteresis scanning, to paint a detailed picture of the alterations in mesopore space caused by the hydrothermal aftertreatment and subsequent aging at 1050 °C. Furthermore, we investigate the network characteristics by electron tomography in combination with suitable statistical analysis, enabling a consistent interpretation of the desorption scans (physisorption). The results indicate that the hydrothermal aftertreatment enhances the mesopore connectivity of the continuous 3D network by widening pores and especially necks, hence facilitating accessibility to the particles' internal surface area and the ability to better withstand high temperatures.
Porous carrier materials functionalized with organocatalysts offer substantial advantages compared to homogeneous catalysts, e.g., easy separation of the catalyst, scalability, and an improved implementation in continuous operations. Here, we report the immobilization of (3-aminopropyl)trimethoxysilane (APTMS) onto self-prepared silica monoliths and its application as a heterogeneous catalyst in the Knoevenagel condensation between cyano ethylacetate and various aromatic aldehydes under continuous-flow conditions. The meso-macroporous silica monoliths (6−7 cm in length) were optimized to be used in flow taking advantage of their hierarchical meso-and macroporosity. The monoliths were cladded with a poly(ether ether ketone) (PEEK) tube by a refined procedure to guarantee tight connection between the carrier material and PEEK. Functionalization of the bare silica monoliths consisting of APTMS can be efficiently performed in flow in ethanol and toluene. While a large grafting gradient is obtained for toluene, the grafting in ethanol proceeds homogenously throughout the monolith, as evidenced by elemental analysis and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The silica monoliths exhibit high conversion up to 95% with concurrent low back pressures, which is of importance in flow catalysis. By connecting two monoliths, high conversions can be maintained for several flow rates. Two types of monoliths were synthesized, possessing different mesopore sizes. The monolith bearing the larger mesopore size showed an enhanced turnover frequency (TOF), while the monolith with the smaller mesopores allowed for larger quantities of the product to be synthesized, due to the higher surface area. A long-term stability test showed that the functionalized monoliths were still active after 66 h of continuous usage, while the overall yield decreased over time.
Here, we present a study of the development of the micro- and mesoporosity of a Ce x Zr1‑x‑y‑z Y y La z O2−δ oxygen storage material upon treatment at temperatures up to 1050 °C. The investigated powder, obtained from nitrate-based metal oxide precursors in a specially developed hydrothermal synthesis, is highly crystalline, features a high surface area and does not show phase segregation at high temperatures. By employing an advanced methodology, consisting of state-of-the-art argon physisorption, thermogravimetric analysis coupled with mass spectrometry (TG-MS) and X-ray powder diffraction (XRD) along with Raman spectroscopy, we correlate the stability of the mesopore system to the presence of surface-bound nitrate groups introduced during synthesis, which prevent sintering up to a temperature of 600 °C. In addition, the connectivity of mesopores was further studied by hysteresis scanning within the argon physisorption measurements. These advanced physisorption experiments suggest a three-dimensionally interconnected pore system and, in turn, a 3D network of the material itself on the nanometer scale which appears to be beneficial to endow the mesopore space with enhanced stability against sintering and mesopore collapse once the removal of nitrate groups is completed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.