There remains a lack of fundamental understanding in the role of backbone rigidity on the thermomechanical properties of conjugated polymers. Here, we provide the first holistic approach to understand the fundamental influence of backbone rigidity on an n-type naphthalene diimide-based conjugated polymer, denoted by PNDI-Cx, through insertion of a flexible conjugation break spacer (CBS). CBS lengths are varied from fully conjugated with zero alkyl spacer (PNDI-C0) to a seven-carbon alkyl spacer (PNDI-C7), with the CBS engineered into each repeat unit for systematic evaluation. Solution small-angle neutron scattering and oscillatory shear rheometry were employed to provide the first quantitative evidence of CBS influence over conjugated polymer chain rigidity and entanglement molecular weight (M e), demonstrating a reduction in the Kuhn length from 521 to 36 Å for fully conjugated PNDI-C0 and PNDI-C6, respectively, as well as a nearly consistent M e of ∼15 kDa upon the addition of CBS. Thermomechanical properties, such as elastic modulus and glass-transition temperature, were shown to decrease with an increasing length of CBS. An extraordinary ductility, upwards of 400% tensile strain before fracture, was observed for high-molecular-weight PNDI-C4, which we attribute to a high number of entanglements and disruption of crystallization. Furthermore, the deformation mechanism for PNDI-Cx was studied under strain through X-ray diffraction, polarized UV–vis spectroscopy, and atomic force microscopy. Overall, this work sheds light on the important role of backbone rigidity in designing flexible and stretchable conjugated polymers.
Conductive polymers largely derive their electronic functionality from chemical doping, processes by which redox and charge‐transfer reactions form mobile carriers. While decades of research have demonstrated fundamentally new technologies that merge the unique functionality of these materials with the chemical versatility of macromolecules, doping and the resultant material properties are not ideal for many applications. Here, it is demonstrated that open‐shell conjugated polymers comprised of alternating cyclopentadithiophene and thiadiazoloquinoxaline units can achieve high electrical conductivities in their native “undoped” form. Spectroscopic, electrochemical, electron paramagnetic resonance, and magnetic susceptibility measurements demonstrate that this donor–acceptor architecture promotes very narrow bandgaps, strong electronic correlations, high‐spin ground states, and long‐range π‐delocalization. A comparative study of structural variants and processing methodologies demonstrates that the conductivity can be tuned up to 8.18 S cm−1. This exceeds other neutral narrow bandgap conjugated polymers, many doped polymers, radical conductors, and is comparable to commercial grades of poly(styrene‐sulfonate)‐doped poly(3,4‐ethylenedioxythiophene). X‐ray and morphological studies trace the high conductivity to rigid backbone conformations emanating from strong π‐interactions and long‐range ordered structures formed through self‐organization that lead to a network of delocalized open‐shell sites in electronic communication. The results offer a new platform for the transport of charge in molecular systems.
Synthetic aromatic polymers are ubiquitous and indispensable to modern life, industry, and the global economy. The direct functionalization of these materials remains a considerable challenge on account of their unreactive aromatic C–H bonds and robust physical properties. Here, we demonstrate that homogeneous gold catalysis offers a mild, chemoselective, and practical approach to functionalize high-volume commodity aromatic polymers. Utilizing a gold-catalyzed intermolecular hydroarylation between a methyl ester functionalized alkyne, methyl propiolate, and nucleophilic arenes within polystyrene (PS) results in direct functionalization of phenyl rings with 1,2-substituted methyl acrylate functional groups. The reactivity and functionalization depend on the steric and electronic environment of the catalyst, counterion pairing, and method of activation. The reactivity is broad in scope, enabling the functionalization of arenes within commercial polysulfone (PSU) and waste polyethylene terephthalate (PET). These reactions open new opportunities to chemically transform aromatic polymers and modify their physical properties.
Homogeneous gold (Au) complexes have demonstrated tremendous utility in modern organic chemistry; however, their application for the synthesis of polymers remains rare. Herein, we demonstrate the first catalytic application of Au complexes toward the polycondensation of alkyne-containing comonomers and heteroarene nucleophiles. Polymerization occurs through successive intermolecular hydroarylation reactions to produce high molecular weight aromatic copolymers with 1,1-disubstituted alkene backbone linkages. Clear correlations between the rate and degree of polymerization (DP) were established based on catalyst structure and counterion pairing, thus enabling polymerization reactions that proceeded with remarkable efficiency, high reactivity, and exceptional DPs. The reactivity is broad in scope, enabling the copolymerization of highly functionalized aromatic and aliphatic monomers. These results highlight the untapped utility of Au catalysis in providing access to new macromolecular constructs. A principal strategy to achieve materials with robust mechanical, chemical, electronic, and thermal properties involves the incorporation of planar, rigid aromatic, or pseudo-aromatic units within the polymer backbone. [1-3] These aromatic polymers form the basis for many highperformance materials applied in demanding applications. While these materials are primarily derived from traditional step-growth polymerizations, late transition metal (i.e., Ni, Pd, Ru, Rh) mediated polycondensations have matured to high levels in recent years, enabling the synthesis of novel aromatic polymers which impact an innumerable number of emerging technologies. [4-7] In order to broaden the scope of polymers that can be prepared, there remains an ongoing need for new catalytic approaches that overcome limitations that define these reactions such as multistep monomer syntheses, harsh reaction conditions, stoichiometric byproduct generation, and intolerance toward oxygen and water. Consequently, widespread efforts have focused on metal catalyzed C À H activation and functionalization processes, where C À C bond formation occurs directly between C(sp 2) À
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.