Isoparaffin-olefin alkylation was investigated using liquid as well as solid onium poly(hydrogen fluoride) catalysts. These new immobilized anhydrous HF catalysts contain varied amines and nitrogen-containing polymers as complexing agents. The liquid poly(hydrogen fluoride) complexes of amines are typical ionic liquids, which are convenient media and serve as HF equivalent catalysts with decreased volatility for isoparaffin-olefin alkylation. Polymeric solid amine:poly(hydrogen fluoride) complexes are excellent solid HF equivalents for similar alkylation acid catalysis. Isobutane-isobutylene or 2-butene alkylation gave excellent yields of high octane alkylates (up to RON = 94). Apart from their excellent catalytic performance, the new catalyst systems significantly reduce environmental hazards due to the low volatility of complexed HF. They represent a new, "green" class of catalyst systems for alkylation reactions, maintaining activity of HF while minimizing its environmental hazards.
Quantitative rearrangement of pivalaldehyde to methyl isopropyl ketone is observed in acids such as trifluoromethanesulfonic acid, anhydrous HF, and trifluoroethyl alcohol-BF3 but not in trifluoroacetic acid. Studies in a mixture of trifluoroacetic acid and trifluoromethanesulfonic acid show that acids with H(o) < or = -11 are able to carry out complete isomerization. These results and density functional theory calculations at the B3LYP/6-31G level suggest that protonated pivalaldehyde undergoes further protosolvation at higher acidities to a reactive superelectrophilic species resulting in rearrangement. A mechanism for the pivalaldehyde rearrangement to methyl isopropyl ketone in strong protic acids involving a reactive protosolvated superelectrophilic intermediate is suggested. Aspects of the related mechanism of the reaction with isobutane with CO in HF/BF3 medium leading to methyl isopropyl ketone are also discussed.
New adamantane derivatives 1 and 2 that bear functionalized one-carbon extensions at all four bridgehead positions have been prepared. Radical nucleophilic substitution (S(RN)1) reaction of 1,3,5,7-tetrabromoadamantane with cyanide produces 1,3,5,7-tetracyanoadamantane (1), which was reduced with borane reagents to 1,3,5,7-tetrakis(aminomethyl)adamantane (2). Improvements in the preparation of 1,3,5,7-tetrahaloadamantanes (halogen = Br, Cl, I) are also reported. [structure--see text]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.