Current peta-scale data analytics frameworks suffer from a significant performance bottleneck due to an imbalance between their enormous computational power and limited I/O bandwidth. Using data compression schemes to reduce the amount of I/O activity is a promising approach to addressing this problem. In this paper, we propose a hybrid framework for interleaving I/O with data compression to achieve improved I/O throughput side-by-side with reduced dataset size. We evaluate several interleaving strategies, present theoretical models, and evaluate the efficiency and scalability of our approach through comparative analysis. With our theoretical model, considering 19 real-world scientific datasets both from the public domain and peta-scale simulations, we estimate that the hybrid method can result in a 12 to 46% increase in throughput on hard-to-compress scientific datasets. At the reported peak bandwidth of 60 GB/s of uncompressed data for a current, leadership-class parallel I/O system, this translates into an effective gain of 7 to 28 GB/s in aggregate throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.