Reducing carbon dioxide to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single atoms of palladium and platinum supported on graphitic carbon nitride (g-C3N4), i.e., Pd/g-C3N4 and Pt/g-C3N4, respectively, acting as photocatalysts for CO2 reduction were investigated by density functional theory calculations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from the hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, deposition of atom catalysts on g-C3N4 significantly enhances the visible-light absorption, rendering them ideal for visible-light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.
Studies of the optical properties and catalytic capabilities of noble metal nanoparticles (NPs), such as gold (Au) and silver (Ag), have formed the basis for the very recent fast expansion of the field of green photocatalysis: photocatalysis utilizing visible and ultraviolet light, a major part of the solar spectrum.The reason for this growth is the recognition that the localised surface plasmon resonance (LSPR) effect of Au NPs and Ag NPs can couple the light flux to the conduction electrons of metal NPs, and the excited electrons and enhanced electric fields in close proximity to the NPs can contribute to converting the solar energy to chemical energy by photon-driven photocatalytic reactions. Previously the LSPR effect of noble metal NPs was utilized almost exclusively to improve the performance of semiconductor photocatalysts (for example, TiO 2 and Ag halides), but recently, a conceptual breakthrough was made: studies on light driven reactions catalysed by NPs of Au or Ag on photocatalytically inactive supports (insulating solids with a very wide band gap) have demonstrated that these materials are a class of efficient photocatalysts working by mechanisms distinct from those of semiconducting photocatalysts. There are several reasons for the significant photocatalytic activity of Au and Ag NPs. (1) The conduction electrons of the particles gain the irradiation energy, resulting in high energy electrons at the NP surface which is desirable for activating molecules on the particles for chemical reactions. (2) In such a photocatalysis system, both light harvesting and the catalysing reaction take place on the nanoparticle, and so charge transfer Sarina SarinaSarina Sarina received her B.Sc. degree from Inner Mongolia University in 2006 and M.Sc. degree from Inner Mongolia University in 2009. She is currently a PhD student at Science and Engineering Faculty, Queensland University of Technology, under the guidance of Prof. Huai Yong Zhu. Her research interests include new visible-light photocatalysts for fine organic synthesis, such as noble metal nanoparticles (and their alloy nanoparticles) and surface complex photocatalysts working by a radical mechanism and adsorbents for removal of radioactive ions from water for safe disposal.
A new efficient photocatalyst structure, a shell of anatase nanocrystals on the fibril core of a single TiO(2)(B) crystal, was obtained via two consecutive partial phase transition processes. In the first stage of the process, titanate nanofibers reacted with dilute acid solution under moderate hydrothermal conditions, yielding the anatase nanocrystals on the fiber. In the subsequent heating process, the fibril core of titanate was converted into a TiO(2)(B) single crystal while the anatase crystals in the shell remained unchanged. The anatase nanocrystals do not attach to the TiO(2)(B) core randomly but coherently with a close crystallographic registry to the core to form a stable phase interface. For instance, (001) planes in anatase and (100) planes of TiO(2)(B) join together to form a stable interface. Such a unique structure has several features that enhance the photocatalytic activity of these fibers. First, the differences in the band edges of the two phases promote migration of the photogenerated holes from anatase shell to the TiO(2)(B) core. Second, the well-matched phase interfaces allow photogenerated electrons and holes to readily migrate across the interfaces because the holes migrate much faster than excited electrons, more holes than electrons migrate to TiO(2)(B) and this reduces the recombination of the photogenerated charges in anatase shell. Third, the surface of the anatase shell has both a strong ability to regenerate surface hydroxyl groups and adsorb O(2), the oxidant of the reaction, to yield reactive hydroxyl radicals (OH(.)) through reaction between photogenerated holes and surface hydroxyl groups. The adsorbed O(2) molecules can capture the excited electrons on the surface, forming reactive O(2)(-) species. The more reactive species generated on the external surface, the higher the photocatalytic activity will be, and generation of the reactive species also contributes to reducing recombination of the photogenerated charges. Indeed, the mixed-phase nanofibers exhibited superior photocatalytic activity for degradation of sulforhodamine B under UV light to the nanofibers of either pure phase alone or mechanical mixtures of the pure phase nanofibers with a similar phase composition. Finally, the nanofibril morphology has an additional advantage that they can be separated readily after reaction for reuse by sedimentation. This is very important because the high cost for separating the catalyst nanocrystals has seriously impeded the applications of TiO(2) photocatalysts on an industrial scale.
The phase transition of single layer molybdenum disulphide (MoS 2 ) from semi-conducting 2H to metallic 1T and then to 1T' phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS 2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS 2 monolayer. The thermodynamic stability of 1T-MoS 2 increases with the negative charge state, comparing with the 2H-MoS 2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 eV to 0.27 eV when 4 e -are injected per MoS 2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T' phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T'-MoS 2 structure hydrogen coverage shows comparable hydrogen evolution reaction activity to the 2H-MoS 2 structure. If the charge transfer kinetics is taken into account, the catalytic activity of 1T'-MoS 2 is superior to that of 2H-MoS 2 . Our finding provides a possible novel method for phase transition of MoS 2 , and enriches understanding of the catalytic properties of MoS 2 for HER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.