In this paper, an optimisation-based approach is proposed using a mixed integer quadratic programming model for the economic dispatch of electrical power generators with prohibited zones of operation. The main advantage of the proposed approach is its capability to solve case studies from the literature to global optimality quickly and without any targeting of solution procedures.
The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the centralised grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation.
Vacuum/pressure swing adsorption is an attractive and often energy efficient separation process for some applications. However, there is often a trade-off between the different objectives: purity, recovery and power consumption. Identifying those trade-offs is possible through use of multi-objective optimisation methods but this is computationally challenging due to the size of the search space and the need for high fidelity simulations due to the inherently dynamic nature of the process. This paper presents the use of surrogate modelling to address the computational requirements of high fidelity simulations needed to evaluate alternative designs. We present SbNSGA-II ALM, surrogate based NSGA-II, a robust and fast multi-objective optimisation method based on kriging surrogate models and NSGA-II with Active Learning MacKay (ALM) design criteria. The method is evaluated by application to an industrially relevant case study: a two column six step system for CO 2 /N 2 separation. A 5 times reduction in computational effort is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.