Next‐generation sequencing has aided characterization of genomic variation. While whole‐genome sequencing may capture all possible mutations, whole‐exome sequencing remains cost‐effective and captures most phenotype‐altering mutations. Initial strategies for exome enrichment utilized a hybridization‐based capture approach. Recently, amplicon‐based methods were designed to simplify preparation and utilize smaller DNA inputs. We evaluated two hybridization capture‐based and two amplicon‐based whole‐exome sequencing approaches, utilizing both Illumina and Ion Torrent sequencers, comparing on‐target alignment, uniformity, and variant calling. While the amplicon methods had higher on‐target rates, the hybridization capture‐based approaches demonstrated better uniformity. All methods identified many of the same single‐nucleotide variants, but each amplicon‐based method missed variants detected by the other three methods and reported additional variants discordant with all three other technologies. Many of these potential false positives or negatives appear to result from limited coverage, low variant frequency, vicinity to read starts/ends, or the need for platform‐specific variant calling algorithms. All methods demonstrated effective copy‐number variant calling when evaluated against a single‐nucleotide polymorphism array. This study illustrates some differences between whole‐exome sequencing approaches, highlights the need for selecting appropriate variant calling based on capture method, and will aid laboratories in selecting their preferred approach.
The fibroblast growth factor receptor (FGFR) signaling pathway is aberrantly activated in approximately 15% to 20% of patients with intrahepatic cholangiocarcinoma. Currently, several FGFR kinase inhibitors are being assessed in clinical trials for patients with FGFR-altered cholangiocarcinoma. Despite evidence of initial responses and disease control, virtually all patients eventually develop acquired resistance. Thus, there is a critical need for the development of innovative therapeutic strategies to overcome acquired drug resistance. Here, we present findings from a patient with FGFR2-altered metastatic cholangiocarcinoma who enrolled in a phase II clinical trial of the FGFR inhibitor, infigratinib (BGJ398). Treatment was initially effective as demonstrated by imaging and tumor marker response; however, after 8 months on trial, the patient exhibited tumor regrowth and disease progression. Targeted sequencing of tumor DNA after disease progression revealed the FGFR2 kinase domain p.E565A and p.L617M single-nucleotide variants (SNV) hypothesized to drive acquired resistance to infigratinib. The sensitivities of these FGFR2 SNVs, which were detected post-infigratinib therapy, were extended to include clinically relevant FGFR inhibitors, including AZD4547, erdafitinib (JNJ-42756493), dovitinib, ponatinib, and TAS120, and were evaluated in vitro. Through a proteomics approach, we identified upregulation of the PI3K/AKT/mTOR signaling pathway in cells harboring the FGFR2 p.E565A mutation and demonstrated that combination therapy strategies with FGFR and mTOR inhibitors may be used to overcome resistance to FGFR inhibition, specific to infigratinib. Collectively, these studies support the development of novel combination therapeutic strategies in addition to the next generation of FGFR inhibitors to overcome acquired resistance in patients.
Activation of fibroblast growth factor receptor (FGFR) signaling through mutations, amplifications, or fusions involving FGFR1, 2, 3, or 4 are seen in multiple tumors including lung, bladder, and cholangiocarcinoma. Currently, several clinical trials are evaluating the role of novel FGFR inhibitors in solid tumors. As we move forward with FGFR inhibitors clinically, we anticipate emergence of resistance with treatment. Consequently, we sought to study the mechanism(s) of acquired resistance to FGFR inhibitors using annotated cancer cell lines. We identified cancer cell lines that have activating mutations in FGFR1, 2, or 3, and treated them chronically with the selective FGFR inhibitor, BGJ398. We observed resistance to chronic BGJ398 exposure in DMS114 (small cell lung cancer, FGFR1 amplification), and RT112 (urothelial carcinoma, FGFR3 fusion/amplification) cell lines based on viability assays. Reverse phase protein array (RPPA) analysis showed increased phosphorylation of Akt (T308 and S473) and its downstream target GSK3 (S9 and S21) in both the resistant cell lines when compared to matching controls. Results of RPPA were confirmed using immunoblots. Consequently, the addition of an Akt inhibitor (GSK2141795) or siRNA was able to restore sensitivity to BGJ398 in resistant cell lines. These data suggest a role for Akt pathway in mediating acquired resistance to FGFR inhibition.
Cholangiocarcinoma is a highly aggressive and lethal malignancy, with limited treatment options available. Recently, FGFR inhibitors have been developed and utilized in FGFR-mutant cholangiocarcinoma; however, resistance often develops and the genomic determinants of resistance are not fully characterized. We completed whole-exome sequencing (WES) of 11 unique tumor samples obtained from a rapid research autopsy on a patient with FGFR-fusion-positive cholangiocarcinoma who initially responded to the pan-FGFR inhibitor, INCB054828. In vitro studies were carried out to characterize the novel FGFR alteration and secondary FGFR2 mutation identified. Multisite WES and analysis of tumor heterogeneity through subclonal inference identified four genetically distinct cancer cell populations, two of which were only observed after treatment. Additionally, WES revealed an FGFR2 N549H mutation hypothesized to confer resistance to the FGFR inhibitor INCB054828 in a single tumor sample. This hypothesis was corroborated with in vitro cell-based studies in which cells expressing FGFR2–CLIP1 fusion were sensitive to INCB054828 (IC 50 value of 10.16 nM), whereas cells with the addition of the N549H mutation were resistant to INCB054828 (IC 50 value of 1527.57 nM). Furthermore, the FGFR2 N549H secondary mutation displayed cross-resistance to other selective FGFR inhibitors, but remained sensitive to the nonselective inhibitor, ponatinib. Rapid research autopsy has the potential to provide unprecedented insights into the clonal evolution of cancer throughout the course of the disease. In this study, we demonstrate the emergence of a drug resistance mutation and characterize the evolution of tumor subclones within a cholangiocarcinoma disease course.
Targeted, capture-based DNA sequencing is a cost-effective method to focus sequencing on a coding region or other customized region of the genome. There are multiple targeted sequencing methods available, but none has been systematically investigated and compared. We evaluated four commercially available custom-targeted DNA technologies for next-generation sequencing with respect to on-target sequencing, uniformity, and ability to detect single-nucleotide variations (SNVs) and copy number variations. The technologies that used sonication for DNA fragmentation displayed impressive uniformity of capture, whereas the others had shorter preparation times, but sacrificed uniformity. One of those technologies, which uses transposase for DNA fragmentation, has a drawback requiring sample pooling, and the last one, which uses restriction enzymes, has a limitation depending on restriction enzyme digest sites. Although all technologies displayed some level of concordance for calling SNVs, the technologies that require restriction enzymes or transposase missed several SNVs largely because of the lack of coverage. All technologies performed well for copy number variation calling when compared to single-nucleotide polymorphism arrays. These results enable laboratories to compare these methods to make informed decisions for their intended applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.