Penicillin-binding proteins (PBPs) have been scrutinized for over 40 years. Recent structural information on PBPs together with the ongoing long-term biochemical experimental investigations, and results from more recent techniques such as protein localization by green fluorescent protein-fusion immunofluorescence or double-hybrid assay, have brought our understanding of the last stages of the peptidoglycan biosynthesis to an outstanding level that allows a broad outlook on the properties of these enzymes. Details are emerging regarding the interaction between the peptidoglycan-synthesizing PBPs and the peptidoglycan, their mesh net-like product that surrounds and protects bacteria. This review focuses on the detailed structure of PBPs and their implication in peptidoglycan synthesis, maturation and recycling. An overview of the content in PBPs of some bacteria is provided with an emphasis on comparing the biochemical properties of homologous PBPs (orthologues) belonging to different bacteria.
We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant -expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double--barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydratebinding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant -expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant-bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function.family 45 endoglucanase ͉ lytic transglycosylase ͉ peptidoglycan ͉ plant cell wall ͉ plant-microbe interactions B acterial and plant cell walls have similar functions but distinctive structures. Bacterial peptidoglycan forms a network of linear polysaccharide strands of alternating Nacetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) residues cross-linked by short polypeptides. As a giant bag-shaped sacculus, peptidoglycan expands via the action of endopeptidases, amidases, and lytic transglycosylases that cleave covalent bonds and allow insertion of new subunits (1). In contrast, the growing plant cell wall is formed from a scaffold of cellulose microfibrils tethered together by branched glycans such as xyloglucan or arabinoxylan that bind noncovalently to cellulose surfaces. The cellulose-hemicellulose network enlarges via polymer slippage or ''creep,'' mechanically powered by turgorgenerated forces in the cell wall and catalyzed by expansins and other wall-loosening agents (2).Expansins are known principally from plants where they function in cell enlargement and other developmental events requiring cell wall loosening (3). Canonical expansins are small proteins (Ϸ26 kDa, Ϸ225 aa) consisting of 2 compact domains: D1 has a fold similar to that of family 45 glycosyl hydrolases (GH45), and D2 has a -sandwich fold. Expansins facilitate cell wall creep without breakdown of wall polymers (3-5). Plant expansins consist of 2 major families: ␣-expansins, which preferentially loosen the cell walls of dicots compa...
The use of the three classical beta-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam) in combination with beta-lactam antibacterials is currently the most successful strategy to combat beta-lactamase-mediated resistance. However, these inhibitors are efficient in inactivating only class A beta-lactamases and the efficiency of the inhibitor/antibacterial combination can be compromised by several mechanisms, such as the production of naturally resistant class B or class D enzymes, the hyperproduction of AmpC or even the production of evolved inhibitor-resistant class A enzymes. Thus, there is an urgent need for the development of novel inhibitors. For serine active enzymes (classes A, C and D), derivatives of the beta-lactam ring such as 6-beta-halogenopenicillanates, beta-lactam sulfones, penems and oxapenems, monobactams or trinems seem to be potential starting points to design efficient molecules (such as AM-112 and LK-157). Moreover, a promising non-beta-lactam molecule, NXL-104, is now under clinical development. In contrast, an ideal inhibitor of metallo-beta-lactamases (class B) remains to be found, despite the huge number of potential molecules already described (biphenyl tetrazoles, cysteinyl peptides, mercaptocarboxylates, succinic acid derivatives, etc.). The search for such an inhibitor is complicated by the absence of a covalent intermediate in their catalytic mechanisms and the fact that beta-lactam derivatives often behave as substrates rather than as inhibitors. Currently, the most promising broad-spectrum inhibitors of class B enzymes are molecules presenting chelating groups (thiols, carboxylates, etc.) combined with an aromatic group. This review describes all the types of molecules already tested as potential beta-lactamase inhibitors and thus constitutes an update of the current status in beta-lactamase inhibitor discovery.
Peptidoglycan (PG) is an essential macromolecular sacculus surrounding most bacteria. It is assembled by the glycosyltransferase (GT) and transpeptidase (TP) activities of multimodular penicillin-binding proteins (PBPs) within multiprotein complex machineries. Both activities are essential for the synthesis of a functional stress-bearing PG shell. Although good progress has been made in terms of the functional and structural understanding of GT, finding a clinically useful antibiotic against them has been challenging until now. In contrast, the TP/PBP module has been successfully targeted by β-lactam derivatives, but the extensive use of these antibiotics has selected resistant bacterial strains that employ a wide variety of mechanisms to escape the lethal action of these antibiotics. In addition to traditional β-lactams, other classes of molecules (non-β-lactams) that inhibit PBPs are now emerging, opening new perspectives for tackling the resistance problem while taking advantage of these valuable targets, for which a wealth of structural and functional knowledge has been accumulated. The overall evidence shows that PBPs are part of multiprotein machineries whose activities are modulated by cofactors. Perturbation of these systems could lead to lethal effects. Developing screening strategies to take advantage of these mechanisms could lead to new inhibitors of PG assembly. In this paper, we present a general background on the GTs and TPs/PBPs, a survey of recent issues of bacterial resistance and a review of recent works describing new inhibitors of these enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.