GLP-I-(7-37) has potent insulinotropic effects in nondiabetic and diabetic subjects. Whether GLP-I-(7-37) is useful as a therapeutic medication in type II diabetes requires further investigation.
The uptake of hydrogen
atoms (H-atoms) into reducible metal oxides
has implications in catalysis and energy storage. However, outside
of computational modeling, it is difficult to obtain insight into
the physicochemical factors that govern H-atom uptake at the atomic
level. Here, we describe oxygen-atom vacancy formation in a series
of hexavanadate assemblies via proton-coupled electron transfer, presenting
a novel pathway for the formation of defect sites at the surface of
redox-active metal oxides. Kinetic investigations reveal that H-atom
transfer to the metal oxide surface occurs through concerted proton–electron
transfer, resulting in the formation of a transient V
III
–OH
2
moiety that, upon displacement of the water
ligand with an acetonitrile molecule, forms the oxygen-deficient polyoxovanadate-alkoxide
cluster. Oxidation state distribution of the cluster core dictates
the affinity of surface oxido ligands for H-atoms, mirroring the behavior
of reducible metal oxide nanocrystals. Ultimately, atomistic insights
from this work provide new design criteria for predictive proton-coupled
electron-transfer reactivity of terminal M=O moieties at the
surface of nanoscopic metal oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.