Join is an important database operation. As computer architectures evolve, the best join algorithm may change hand. This paper reexamines two popular join algorithms-hash join and sort-merge join-to determine if the latest computer architecture trends shift the tide that has favored hash join for many years. For a fair comparison, we implemented the most optimized parallel version of both algorithms on the latest Intel Core i7 platform. Both implementations scale well with the number of cores in the system and take advantages of latest processor features for performance. Our hash-based implementation achieves more than 100M tuples per second which is 17X faster than the best reported performance on CPUs and 8X faster than that reported for GPUs. Moreover, the performance of our hash join implementation is consistent over a wide range of input data sizes from 64K to 128M tuples and is not affected by data skew. We compare this implementation to our highly optimized sort-based implementation that achieves 47M to 80M tuples per second. We developed analytical models to study how both algorithms would scale with upcoming processor architecture trends. Our analysis projects that current architectural trends of wider SIMD, more cores, and smaller memory bandwidth per core imply better scalability potential for sort-merge join. Consequently, sort-merge join is likely to outperform hash join on upcoming chip multiprocessors. In summary, we offer multicore implementations of hash join and sort-merge join which consistently outperform all previously reported results. We further conclude that the tide that favors the hash join algorithm has not changed yet, but the change is just around the corner.
In-memory tree structured index search is a fundamental database operation. Modern processors provide tremendous computing power by integrating multiple cores, each with wide vector units. There has been much work to exploit modern processor architectures for database primitives like scan, sort, join, and aggregation. However, unlike other primitives, tree search presents significant challenges due to irregular and unpredictable data accesses in tree traversal. In this article, we present FAST, an extremely fast architecturesensitive layout of the index tree. FAST is a binary tree logically organized to optimize for architecture features like page size, cache line size, and Single Instruction Multiple Data (SIMD) width of the underlying hardware. FAST eliminates the impact of memory latency, and exploits thread-level and data-level parallelism on both CPUs and GPUs to achieve 50 million (CPU) and 85 million (GPU) queries per second for large trees of 64M elements, with even better results on smaller trees. These are 5X (CPU) and 1.7X (GPU) faster than the best previously reported performance on the same architectures. We also evaluated FAST on the Intel R Many Integrated Core architecture (Intel R MIC), showing a speedup of 2.4X-3X over CPU and 1.8X-4.4X over GPU. FAST supports efficient bulk updates by rebuilding index trees in less than 0.1 seconds for datasets as large as 64M keys and naturally integrates compression techniques, overcoming the memory bandwidth bottleneck and achieving a 6X performance improvement over uncompressed index search for large keys on CPUs. P. 2011. Designing fast architecture-sensitive tree search on modern multicore/many-core processors.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.