The effect of the NR and directional microphone algorithms was measured to be 2-3 and 3.6-4.4 dB, respectively, using the TNT procedure. Because of its tracking property and reliability, this procedure may hold promise in differentiating among some hearing aid features that also differ in their time course of action.
It has been suggested that hearing-impaired listeners with a good working memory (WM) should be fitted with a compression system using short time constants (i.e., fast-acting compression [FAC]), whereas those with a poorer WM should be fitted with a longer time constant (i.e., slow-acting compression [SAC]). However, commercial hearing aids (HAs) seldom use a fixed speed of compression.The performance of a variable speed compression (VSC) system relative to a fixed speed compressor (FAC and SAC) on measures of speech intelligibility, recall, and subjective report of listening effort and tolerable time was evaluated. The potential interaction with the listeners’ WM capacity (WMC) was also examined.A double-blinded, repeated measures design.Seventeen HA wearers (16 with greater than one year HA experience) with a bilaterally symmetrical, mild to moderately severe sensorineural hearing loss participated in the study.Participants wore the study HAs at three compression speeds (FAC, SAC, and VSC). Each listener was evaluated on the Office of Research in Clinical Amplification-nonsense syllable test (NST) at 50 dB SPL (signal-to-noise ratio [SNR] = +15 dB), 65 dB SPL (SNR = +5 dB), 80 dB SPL (SNR = 0 dB), and a split (80 dB SPL–50 dB SPL) condition. Listeners were also evaluated on a Repeat Recall Test (RRT), where they had to repeat six short sentences (both high- and low-context sentences) after each was presented. Listeners recalled target words in all six sentences after they were presented. They also rated their listening effort and the amount of time they would tolerate listening under the specific condition. RRT sentences were presented at 75 dB SPL in quiet, as well as SNR = 0, 5, 10, and 15 dB. A Reading Span Test (RST) was also administered to assess listeners’ WMC. Analysis of variance using RST scores as a covariate was used to examine differences in listener performance among compressor speeds.Listener performance on the NST was similar among all three compression speeds at 50, 65, and 80 dB SPL. Performance with FAC was significantly better than SAC for the split condition; however, performance did not differ between FAC and VSC or between SAC and VSC. Performance on the NST was not affected by listeners’ RST scores. On the RRT, there was no effect of compressor speed on measures of repeat, recall, listening effort, and tolerable time. However, VSC resulted in significantly lower (better) speech reception threshold at the 85% correct recognition criterion (SRT85) than FAC and SAC. Listener RST scores significantly affected recall performance on the RRT but did not affect SRT85, repeat, listening effort, or tolerable time.These results suggest that the VSC, FAC, and SAC yield similar performance in most but not all test conditions. FAC outperforms SAC, where the stimulus levels change abruptly (i.e., split condition). The VSC yields a lower SRT85 than a fixed compression speed at a moderately high level with a favorable SNR. There is no interaction between compression speed and the participants’ WMC.
The WNA algorithm used in this study reduced subjective annoyance for wind speeds ranging from 4 to 7 m/sec. The algorithm was effective in improving speech identification in the presence of wind originating from 0° at 5 m/sec. These results suggest that the WNA algorithm used in the current study could expand the range of real-life situations where a hearing-impaired person can use the hearing aid optimally.
A method that tracked tolerable noise level (TNL) over time while maintaining subjective speech intelligibility was reported previously. Although this method was reliable and efficacious as a research tool, its clinical efficacy and predictive ability of real-life hearing aid satisfaction were not measured.The study evaluated an adaptive method to estimate TNL using slope and variance of tracked noise level as criteria in a clinical setting. The relationship between TNL and subjective hearing aid satisfaction in noisy environments was also investigated.A single-blinded, repeated-measures design.Seventeen experienced hearing aid wearers with bilateral mild-to-moderately-severe sensorineural hearing loss.Participants listened to 82-dB SPL continuous speech and tracked the background noise level that they could “put up with” while subjectively understanding >90% of the speech material. Two trials with each babble noise and continuous speech-shaped noise were measured in a single session. All four trials were completed aided using the participants’ own hearing aids. The stimuli were presented in the sound field with speech from 0° and noise from the 180° azimuth. The instantaneous tolerable noise level was measured using a custom program and scored in two ways; the averaged TNL (aTNL) over the 2-min trial and the estimated TNL (eTNL) as soon as the listeners reached a stable noise estimate. Correlation between TNL and proportion of satisfied noisy environments was examined using the MarkeTrak questionnaire.All listeners completed the tracking of noise tolerance procedure within 2 min with good reliability. Sixty-five percent of the listeners yielded a stable noise estimate after 59.9 sec of actual test time. The eTNL for all trials was 78.6 dB SPL (standard deviation [SD] = 4.4 dB). The aTNL for all trials was 78.0 dB SPL (SD = 3.3 dB) after 120 sec. The aTNL was 79.2 dB SPL (SD = 5.4 dB) for babble noise and 77.0 dB SPL (SD = 5.9 dB) for speech-shaped noise. High within-session test–retest reliability was evident. The 95% confidence interval was 1.5 dB for babble noise and 2.8 dB for continuous speech-shaped noise. No significant correlation was measured between overall hearing aid satisfaction and the aTNL (ρ = 0.20 for both noises); however, a significant relationship between aTNL and proportion of satisfied noisy situations was evident (ρ = 0.48 for babble noise and ρ = 0.55 for speech-shaped noise).The eTNL scoring method yielded similar results as the aTNL method although requiring only half the time for 65% of the listeners. This time efficiency, along with its reliability and the potential relationship between TNL and hearing aid satisfaction in noisy listening situations suggests that this procedure may be a good clinical tool to evaluate whether specific features on a hearing aid would improve noise tolerance and predict wearer satisfaction with the selected hearing aid in real-life loud noisy situations. A larger sample of hearing aid wearers is needed to further validate these potential uses.
These findings supported the value of an on/off switch on a CROS transmitter because it allows convenient selective transmission of sounds. It also highlighted the importance of instructions and practice in using the BiCROS hearing aid successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.