The Middle Eocene Climatic Optimum (MECO) is a global warming event that occurred at about 40 Ma. In comparison to the most known global warming events of the Paleogene, the MECO has some peculiar features that make its interpretation controversial. The main peculiarities of the MECO are a duration of ~500 kyr and a carbon isotope signature that varies from site to site. Here we present new carbon and oxygen stable isotopes records (δ
13
C and δ
18
O) from three foraminiferal genera dwelling at different depths throughout the water column and the sea bottom during the middle Eocene, from eastern Turkey. We document that the MECO is related to major oceanographic and climatic changes in the Neo-Tethys and also in other oceanic basins. The carbon isotope signature of the MECO is difficult to interpret because it is highly variable from site to site. We hypothesize that such δ
13
C signature indicates highly unstable oceanographic and carbon cycle conditions, which may have been forced by the coincidence between a 400 kyr and a 2.4 Myr orbital eccentricity minimum. Such forcing has been also suggested for the Cretaceous Oceanic Anoxic Events, which resemble the MECO event more than the Cenozoic hyperthermals.
Magnetotactic bacteria (MTB) synthesize magnetite and greigite crystals under low oxygen conditions in the water column or uppermost sediment (greigite‐producing bacteria are found below the oxic‐anoxic transition). Dissolved iron and oxygen contents in local environments are known to be limiting factors for the production and preservation of biogenic magnetite. Understanding the processes that link MTB to their living environments is fundamental to reconstructing past chemical variations in the water column and sediment, and for using the magnetic properties of biogenic magnetite as environmental proxy indicators. Previous studies have suggested that the frequently identified biogenic soft (BS) and biogenic hard (BH) magnetite types are associated with equant and more elongated morphologies, respectively, and that their abundance varies in accordance with sedimentary oxygen content, where MTB that produce the BH component live in less oxygenated environments. We test this hypothesis in a high‐resolution integrated environmental magnetic and geochemical study of surface sediments from Mamanguá Ría, SE Brazil. Based on magnetic and pore water profiles, we demonstrate that both the BS and BH components occur within microaerobic environments and that as sediment oxygen content decreases with depth, the BS component disappears before the BH component. With continued burial into the sulfidic diagenetic zone, both components undergo progressive dissolution, but the BH component is more resistant to dissolution than the BS component. Our observations confirm previous inferences about the relative stability of these phases and provide a firmer basis for use of these two types of biogenic magnetite as paleoenvironmental proxies.
The geological record preserves extensive deposits of iron-rich chemical sediments, referred to as iron formations (IFs). These rocks are characterized by a high content (>15%-20%) of iron-bearing minerals, typically layered or massive, interbedded with silica and/or carbonate-rich layers that were deposited throughout the Precambrian (James, 1983;Klein, 2005). Over the past few decades, studies have employed the chemical and isotopic composition of IFs to constrain past environmental conditions (e.g., Planavsky et al., 2014;Satkoski et al., 2015) and to understand how the microbial iron cycle evolved alongside redox conditions through time (Heard & Dauphas, 2020;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.