We examine the short and long-time behaviors of time-fractional diffusion equations with variable space-dependent order. More precisely, we describe the time-evolution of the solution to these equations as the time parameter goes either to zero or to infinity.Mathematics subject classification 2010: 35R11, 35B35, 35B38.
International audienceGiven $(M,g)$, a compact connected Riemannian manifold of dimension $d \geq 2$, with boundary $\partial M$, we consider an initial boundary value problem for a fractional diffusion equation on $(0,T) \times M$, $T>0$, with time-fractional Caputo derivative of order $\alpha \in (0,1) \cup (1,2)$. We prove uniqueness in the inverse problem of determining the smooth manifold $(M,g)$ (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solution on a subset of $\partial M$ at fixed time. In the ``flat" case where $M$ is a compact subset of $\mathbb R^d$, two out the three coefficients $\rho$ (weight), $a$ (conductivity) and $q$ (potential) appearing in the equation $\rho \partial_t^\alpha u-\textrm{div}(a \nabla u)+ q u=0$ on $(0,T)\times \Omega$ are recovered simultaneously
International audienceWe consider the multidimensional inverse problem of determining the conductivity coefficient of a hyperbolic equation in an infinite cylindrical domain, from a single boundary observation of the solution. We prove Hölder stability with the aid of a Carleman estimate specifically designed for hyperbolic waveguides
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.