River network scaling laws describe how their shape varies with their size. However, the regional variation of this size-dependence remains poorly understood. Here we show that river network scaling laws vary systematically with the climatic aridity index. We find that arid basins do not change their proportions with size, while humid basins do. To explore why, we study an aspect ratio L ⊥ / L ∥ between basin width L ⊥ and basin length L ∥ . We find that the aspect ratio exhibits a dependence on climate and argue that this can be understood as a structural consequence of the confluence angle. We then find that, in humid basins, the aspect ratio decreases with basin size, which we attribute to a common hydrogeological hierarchy. Our results offer an explanation of the variability in network scaling exponents and suggest that the absence of self-similarity in humid basins can be understood as a morphological expression of subsurface processes.
Valleys that form around a stream head often develop characteristic finger-like elevation contours. We study the processes involved in the formation of these valleys and introduce a theoretical model that indicates how shape may inform the underlying processes. We consider valley growth as the advance of a moving boundary travelling forward purely through linearly diffusive erosion, and we obtain a solution for the valley shape in three dimensions. Our solution compares well to the shape of slowly growing groundwater-fed valleys found in Bristol, Florida. Our results identify a new feature in the formation of groundwater-fed valleys: a spatially variable diffusivity that can be modelled by a fixed-height moving boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.