High-resolution in vivo imaging of gene expression is not possible in opaque animals by existing techniques. Here we present a new approach for obtaining such images by magnetic resonance imaging (MRI) using an MRI contrast agent that can indicate reporter gene expression in living animals. We have prepared MRI contrast agents in which the access of water to the first coordination sphere of a chelated paramagnetic ion is blocked with a substrate that can be removed by enzymatic cleavage. Following cleavage, the paramagnetic ion can interact directly with water protons to increase the MR signal. Here, we report an agent where galactopyranose is the blocking group. This group renders the MRI contrast agent sensitive to expression of the commonly used marker gene, beta-galactosidase. To cellular resolution, regions of higher intensity in the MR image correlate with regions expressing marker enzyme. These results offer the promise of in vivo mapping of gene expression in transgenic animals and validate a general approach for constructing a family of MRI contrast agents that respond to biological activity.
Cellular therapeutics show great promise for the treatment of disease, but few noninvasive techniques exist for monitoring the cells after administration. Here we present a magnetic resonance imaging (MRI) technology that uses perfluoropolyether (PFPE) agents to track cells in vivo. Fluorine MRI selectively images only the labeled cells, and a 'conventional' (1)H image places the cells in their anatomical context. We labeled phenotypically defined dendritic cells (DCs) with PFPE ex vivo and observed efficient intracellular uptake of the PFPE with little effect on DC function. We injected labeled DCs into tissue or intravenously in mice and then tracked the cells in vivo using (19)F MRI. Although we focused on DCs, which are being developed as immunotherapeutics for cancer and autoimmune diseases, this technology should be useful for monitoring a wide range of cell types in vivo.
This article describes an in vivo imaging method for visualizing and quantifying a specific cell population. Cells are labeled ex vivo with a perfluoropolyether nanoparticle tracer agent and then detected in vivo using 19
The increasing complexity of in vivo imaging technologies, coupled with the development of cell therapies, has fuelled a revolution in immune cell tracking in vivo. Powerful magnetic resonance imaging (MRI) methods are now being developed that use iron oxide- and 19F-based probes. These MRI technologies can be used for image-guided immune cell delivery and for the visualization of immune cell homing and engraftment, inflammation, cell physiology and gene expression. MRI-based cell tracking is now also being applied to evaluate therapeutics that modulate endogenous immune cell recruitment and to monitor emerging cellular immunotherapies. These recent uses show that MRI has the potential to be developed in many applications to follow the fate of immune cells in vivo.
We report a new platform technology for visualizing transgene expression in living subjects using magnetic resonance imaging (MRI). Using a vector, we introduced an MRI reporter, a metalloprotein from the ferritin family, into specific host tissues. The reporter is made superparamagnetic as the cell sequesters endogenous iron from the organism. In this new approach, the cells construct the MRI contrast agent in situ using genetic instructions introduced by the vector. No exogenous metal-complexed contrast agent is required, thereby simplifying intracellular delivery. We used a replication-defective adenovirus vector to deliver the ferritin transgenes. Following focal inoculation of the vector into the mouse brain, we monitored the reporter activity using in vivo time-lapse MRI. We observed robust contrast in virus-transduced neurons and glia for several weeks. This technology is adaptable to monitor transgene expression in vivo in many tissue types and has numerous biomedical applications, such as visualizing preclinical therapeutic gene delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.