Previous studies in Aspergillus fumigatus (Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latgé J.-P, J. Biol. Chem. 2000, 275, 14882-14889) have shown that a glucanosyltransferase playing an important role in fungal cell wall biosynthesis is glycosylphosphatidylinositol (GPI) anchored to the membrane. To identify other GPI-anchored proteins putatively involved in cell wall biogenesis, a proteomic analysis has been undertaken in A. fumigatus and the protein data were matched with the yeast genomic data. GPI-anchored proteins of A. fumigatus were released from membrane preparation by an endogenous GPI-phospholipase C, purified by liquid chromatography and separated by two-dimensional electrophoresis. They were characterized by their peptide mass fingerprint through matrix-assisted laser desorption/ionization-time of flight-(MALDI-TOF)-mass spectrometry and by internal amino acid sequencing. Nine GPI-anchored proteins were identified in A. fumigatus. Five of them were homologs of putatively GPI-anchored yeast proteins (Csa1p, Crh1p, Crh2p, Ecm33p, Gas1p) of unknown function but shown by gene disruption analysis to play a role in cell wall morphogenesis. In addition, a comparative study performed with chitin synthase and glucanosyl transferase mutants of A. fumigatus showed that a modification of the growth phenotype seen in these mutants was associated to an alteration of the pattern of GPI-anchored proteins. These results suggest that GPI-anchored proteins identified in this study are involved in A. fumigatus cell wall organization.
Tumor necrosis factor (TNF)-␣ is initially synthesized as a membrane-bound, cell-associated 26-kDa protein that is further cleaved to yield the soluble 17-kDa form. By using a radiolabeled in vitro translated TNF-␣ precursor we detected a serine proteinase processing activity present in crude membrane preparations of monocytic cells able to generate a 17-kDa active protein. A similar processing pattern was obtained using purified neutral serine proteinase proteinase-3 (PR-3). Moreover, while a secretory leukocyte proteinase inhibitor (a natural serine anti-proteinase) did not affect the in vitro TNF-␣ processing, IgG preparations containing high titers of anti-PR-3 autoantibodies completely blocked this activity. The NH 2 -terminal sequencing of the reaction products obtained with either membrane preparations or PR-3 showed that cleavage occurs in both cases between Val 77 and Arg 78 . These results together with cellular expression and localization of PR-3 suggest a potential role for this enzyme as an accessory TNF-␣ processing enzyme.
The dimorphic fungus Candida albicans is an opportunistic human pathogen. Candidiasis is usually treated with azole antifungal agents. However clinical treatments may fail due to the appearance of resistance to this class of antifungal agents in Candida. Echinocandin derivatives are an alternative for the treatment of these fungal infections and are active against azole resistant isolates of C. albicans. Azoles inhibit the lanosterol 14 alpha demethylase which is a key enzyme in the synthesis of ergosterol. In contrast, the echinocandin class of antibiotics inhibit noncompetitively beta-(1,3)-D-glucan synthesis in vitro. We have investigated the impact of mulundocandin on the proteome of C. albicans and compared it to those of a mulundocandin derivative, as well as to two azoles of different structure, fluconazole and itraconazole. The changes in gene expression underlying the antifungal responses were analyzed by comparative 2-D PAGE. Dose dependant responses were kinetically studied on C. albicans grown at 25 degrees C (yeast form) in synthetic dextrose medium. This study shows that antifungals with a common mechanism of action lead to comparable effects at the proteome level and that a proteomics approach can be used to distinguish different antifungals, with the promise to become a useful tool to study drugs of unknown mechanism of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.